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1 Introduction

We consider the linear problem of water waves scattering by a vertical cylinder with non-circular cross
section extending from the sea bottom to the free surface in water of finite depth h. We assume a
plane wavetrain incident from x ∼ −∞ and propagating at an angle α to the positive x−direction
toward a vertical cylinder whose cross section is described by the equation r = R+ εf(θ) with ε� 1.
The function f(θ) describes the deviation of the shape of the cylinder from the circular one, f(θ) = 0
corresponds to the circular cylinder with radius R. The problem of wave scattering by a nearly circular
cylinder was formulated in [1]. The top view of the problem is shown in Figure 1. The problem of
wave diffraction by a vertical cylinder has been solved by a number of researchers for many different
shapes. The challenge of the present study is to solve the complex body geometries with less effort.
The abstract presents the results which have been obtained for one simple geometry: a cylinder with
elliptic cross section.

Figure 1: Top view of the problem configuration.

2 Mathematical Formulation of The Problem

The linear boundary problem is formulated with respect to the velocity potential Φ(r, θ, z, t)

Φ(r, θ, z, t) = <
{
gA

ω

cosh[k(z + h)]

cosh(kh)
φ(r, θ)e−iwt

}
,

where φ satisfies the Helmholtz equation (∇2 + k2)φ = 0 in the flow region, A is the incident wave
amplitude, k = 2π

λ is the wave number, λ is the incident wave length, ω is the wave frequency related
to the wave number k by the dispersion relation ω2 = gk tanh(kh), where g is the gravitational
acceleration. The coordinate system (r, θ, z) is used with the origin at the free surface and the z-axis
directed upwards. The axis of the corresponding circular cylinder with ε = 0 coincides with the z-axis.

The boundary condition on the cylinder r = R+ εf(θ) is

∂φ

∂n
= 0 on r = R+ εf(θ), −h < z < 0, (1)



where ~n is the unit normal vector on the cylinder. This boundary condition can be written as

∂φ

∂r
(R+ εf(θ), θ)− εf ′(θ)[

R+ εf(θ)
]2 ∂φ∂θ (R+ εf(θ), θ) = 0. (2)

We approximate the boundary condition (2) up to O(ε5) using the Taylor expansion at r = R and
substitute the fifth order asymptotic expansion of the potential φ

φ(r, θ) = φ0(r, θ) + εφ1(r, θ) + ε2φ2(r, θ) + ε3φ3(r, θ) + ε4φ4(r, θ) +O(ε5), (3)

into the boundary condition (2) with the result

φ0,r + ε

[
φ1,r + f(θ)φ0,rr −

f ′(θ)

R2
φ0,θ

]
+ ε2

[
φ2,r + f(θ)φ1,rr −

f ′(θ)

R2
φ1,θ +

f2(θ)

2
φ0,rrr +

2f(θ)f ′(θ)

R3
φ0,θ −

f(θ)f ′(θ)

R2
φ0,rθ

]
+ ε3

[
φ3,r + f(θ)φ2,rr −

f ′(θ)

R2
φ2,θ +

f2(θ)

2
φ1,rrr +

2f(θ)f ′(θ)

a3
φ1,θ −

f(θ)f ′(θ)

R2
φ1,rθ

+
2f2(θ)f ′(θ)

R3
φ0,rθ +

f3(θ)

6
φ0,rrrr −

3f2(θ)f ′(θ)

R4
φ0,θ −

f2(θ)f ′(θ)

2R2
φ0,rrθ

]
+ ε4

[
φ4,r + f(θ)φ3,rr −

f ′(θ)

R2
φ3,θ +

f2(θ)

2
φ2,rrr −

f(θ)f ′(θ)

a2
φ2,rθ +

2f(θ)f ′(θ)

R3
φ2,θ

− 3f2(θ)f ′(θ)

R4
φ1,θ −

f2(θ)f ′(θ)

2a2
φ1,rrθ +

2f2(θ)f ′(θ)

a3
φ1,rθ +

f3(θ)

6
φ1,rrrr

− 3f3(θ)f ′(θ)

R4
φ0,rθ +

f3(θ)f ′(θ)

a3
φ0,rrθ −

f3(θ)f ′(θ)

6a2
φ0,rrrθ +

f4(θ)

24
φ0,rrrrr +

4f3(θ)f ′(θ)

R5
φ0,θ

]
= 0,

(4)

where the functions are computed at r = R. Since the right hand side of this equation is zero, the
coeffcients of εi, i = 0, 1, 2, 3, 4, on the left hand side of (4) are equal to zero. Using (4) we derive five
boundary conditions for five unknown potentials φi(r, θ), i = 0, 1, 2, 3, 4, first two of them are:

φ0,r(R, θ) = 0, (5)

φ1,r(R, θ) =
1

R2
f ′(θ)φ0,θ(R, θ)− f(θ)φ0,rr(R, θ). (6)

It is clear that φ0(r, θ) is the velocity potential of the diffraction problem for the circular cylinder
r = R with the solution (see [1])

φ0(r, θ) =

∞∑
m=0

εmi
m

[
Jm(kr)− J ′m(kR)

H
(1)′
m (kR)

H(1)
m (kr)

]
cos[m(θ − α)],

which satisfies equation (5), where εm is the Neumann symbol which is given by ε0 = 1, εm = 2,
m ≥ 1. The series converges exponentially as m→∞.

The most general representations of φi(r, θ), i = 1, 2, 3, 4, which satisfy the radiation condition at
infinity are

φi(r, θ) =

∞∑
m=0

[
Ci,m cos[m(θ − α)] +Di,m sin[m(θ − α)]

]
H(1)
m (kr),

where the evanescent modes are not included (see [1]) and Ci,m and Di,m, i = 0, 1, 2, 3, 4, are unknown
coeffcients. The coefficients can be determined using the boundary conditions (5),(6) and the other 3
conditions and hence we can find the velocity potentials with the accuracy O(ε5).



We also assume that f(θ) can be written as a Fourier series

f(θ) =
f c0
2

+
∞∑
m=1

[f cm cos(mθ) + fsm sin(mθ)],

where the coeffcients f ci and fsi , i = 0, 1, 2, . . . depend on a particular shape of the vertical cylinder
in waves. If the function f(θ) is independent of ε then the right hand side of the conditions (5), (6)
and the other 3 conditions depends only on θ. So we can write these conditions as φi,r(a, θ) = Gi(θ),
i = 0, 1, 2, 3, 4, where Gi(θ) are represented by their Fourier series. After writing Gi(θ) as Fourier
series, we can find the unknown coefficients Ci,m and Di,m, i = 0, 1, 2, 3, 4.

If the function f(θ, ε) depends on θ and ε, then we can use the asymptotic expansion of f(θ, ε) as
ε→ 0:

f(θ, ε) = f0(θ) + εf1(θ) + ε2f2(θ) + ε3f3(θ) + ε4f4(θ) +O(ε5),

or higher order, and substituting this into (4) and then applying the same procedure as in the previous
case we can find the unknown coefficients. As an example of this case, we have solved a problem for
the cylinder with elliptic cross section of small eccentricity in the next section and calculated the
hydrodynamic forces acting on this cylinder. The x and y components of the hydrodynamic force due
to the fluid motion are given by

Fx = <
{
−iρgA tanh(kh)

k

[∫ 2π

0
φ(a+ εf(θ), θ)[εf ′(θ) sin θ + [a+ εf(θ)] cos θ] dθ

]
e−iwt

}
, (7)

Fy = <
{
−iρgA tanh(kh)

k

[∫ 2π

0
φ(a+ εf(θ), θ)[−εf ′(θ) cos θ + [a+ εf(θ)] sin θ] dθ

]
e−iwt

}
. (8)

Dividing Fx and Fy by ρgAπa2 tanh(kh), we arrive at the non-dimensionalized force components F̃x
and F̃y.

3 Example: Elliptic cylinder

The ellipse’s equation in the polar coordinates with the origin at the focus reads

r =
a(1− e2)
1− e cos θ

, (9)

where e =
√

1− b2

a2
, 0 < e < 1, is the eccentricity of the ellipse, a is semi-major axis, b is semi-minor

axis. Assuming e� 1 and setting e = ε we can write (9) in the form of Fourier series and then using
Taylor expansion about ε = 0 we obtain

r = R+ εf(θ) = a
√

1− ε2 + 2a
√

1− ε2
∞∑
n=1

[
ε

1 +
√

1− ε2

]n
cos(nθ)

= a+ εa cos θ − ε2a sin2 θ − ε3a cos θ sin2 θ + ε4a cos2 θ sin2 θ +O(ε5).

Hence,

R = a,

f(θ) = a cos θ − εa sin2 θ − ε2a cos θ sin2 θ + ε3a cos2 θ sin2 θ +O(ε4) (10)

in (2). Rewriting conditions (5),(6) and the other 3 conditions for the function (10) we get:

φ0,r(a, θ) =0,

φ1,r(a, θ) =− 1

a
sin θφ0,θ(a, θ)− a cos θφ0,rr(a, θ),

φ2,r(a, θ) =− a cos θφ1,rr(a, θ) + a sin2 θφ0,rr(a, θ)−
a2 cos2 θ

2
φ0,rrr(a, θ)−

1

a
sin θφ1,θ(a, θ).

In the same manner, we can write the conditions for φ3,r(a, θ) and φ4,r(a, θ).
Substituting (10) into the equations (7), (8) and dividing them by ρgAπa2 tanh(kh), we get non-

dimensionalized force components F̃x, F̃y for elliptic cylinder.



4 Results and Conclusions

We have applied the asymptotic analysis described above to scattering problems of one-dimensional
waves by a vertical cylinder with non-circular cross section. For an elliptic cylinder, we compared
our results with the results by Williams [2] who used the expansion of the exact expressions for the
forces which are given by the Mathieu functions for small values of the elliptic eccentricity parameter.
The present asymptotic approach provides a good approximation for the forces exerted on the elliptic
cylinder with eccentricity ε = 0.5 to the incident wave for values of α = 0◦ and α = 90◦ (see Figure 2,
Figure 3). We found that, if the incident wave makes zero angle with the positive x-axis and ka→ 0,
then

F̃x =

[
2− 3

2
ε2 − 1

8
ε4 +O(ε6)

]
cosωt,

and if the incident wave makes the angle of π
2 with the positive x-axis and ka→ 0, then

F̃y =

[
2− 1

2
ε2 − 1

8
ε4 +O(ε6)

]
cosωt,

which coincide with the asymptotic formulae from [2].
In conclusion, for different shapes of a vertical cylinder, r = R+ εf(θ), we can find the wave forces

acting on the cylinder by using the formulae (7) and (8).

Figure 2: The x-component of the non-
dimensionlized force on elliptic cylinder for ε =
0.5. (Solid curve is from [2], dotted curve is by
the present method).

Figure 3: The y-component of the non-
dimensionlized force on elliptic cylinder for ε =
0.5. (Solid curve is from [2], dotted curve is by
the present method).
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