
Total transmission through narrow gaps in channels

by D.V. Evans & R. Porter

University of Bristol, University Walk, Bristol, BS8 1TW, UK.

d.v.evans@bris.ac.uk

Highlights:

• A small gap approximation is used to show total
transmission through multiple narrow gaps in barriers
across a channel.

• Coupled integral equations are solved exactly on the
basis of the small gap approximation.

1. Introduction

The phenomenon of ‘extraordinary transmission’ was
first discovered in the field of optics. A recent review
is given by Garcia de Abajo (2007).
Total transmission of a plane wave at a certain fre-
quency is very familiar in the theory of linear water
waves involving transmission over a long obstacle or
past a pair of obstacles. See for example Newman
(1965) and Porter & Evans (1995).
The solution to the problem of the transmission of
plane waves through a gap in a barrier spanning a
narrow channel is well-known. See for example Jones
(1986) for an electromagnetic context. In this paper
we show that 100% transmission can occur at a given
frequency for an infinite sequence of spacings, when
one or more extra identical barriers with small gaps
are introduced. Specifically we consider the transmis-
sion of long waves down a channel of width 2d contain-
ing N equally-spaced thin rigid barriers spanning the
channel each containing a central narrow gap of width
2a. It is shown by comparison with a full numerical
treatment that a small-gap approximation to the sin-
gle barrier is remarkably accurate for a range of gap
sizes. The technique is extended to obtain closed-form
expressions for the reflection and transmission coeffi-
cients through the periodic array which are shown, as
the spacing between the barriers increases, to reduce to
the simple expressions based on a wide-spacing aproxi-
mation (WSA) given, for example, by Martin (2014). A
key feature of the problem is the derivation of the con-
dition under which we are in a pass or stop-band for the
periodic structure. Also obtained is the condition for
total reflection which disappears as the barrier spacing
increases which is consistent with its non-appearance
under the WSA.

2. The N-barrier problem

Since the channel walls and the barriers extend
throughout the depth it is possible to factor out the

depth dependence and we also assume a time harmonic
dependence e−iωt. Thus we seek a two-dimensional po-
tential φ(x, y) satisfying

(∇2 + k2)φ = 0 (1)

in the fluid, where the wavenumber k is the real positive
root of

ω2 = gk tanh kh (2)

where h is the depth of the channel. The barriers oc-
cupy x = bn = nb, n = 0, 1, 2, . . . , N − 1, and the gaps
occupy L = {|y| < a}. The no-flow condition on the
walls demands

φy(x,±d) = 0, −∞ < x < ∞ (3)

whilst on the nth barrier (n = 0, 1, 2, . . . , N − 1)

φx(b
±

n , y) = 0, a < |y| < d. (4)

For x < 0, general solutions of (1) satisfying (3) are

φ(x, y) = eikx +RNe−ikx +

∞
∑

r=1

F
(0)
r eαrx cos pry

αr
(5)

where pr = rπ/d, αr = (p2r − k2)1/2, α0 = −ik, k <
π/d. For x > (N − 1)b, we write

φ(x, y) = TNeik(x−bN−1)

−

∞
∑

r=1

F
(N−1)
r e−αr(x−bN−1) cos pry

αr
. (6)

Finally, for (n− 1)b < x < nb, n = 1, 2, . . . , N − 1, we
write

φ(x, y) =
∞
∑

r=0

(F
(n)
r coshαr(x− bn−1)− . . .

αr sinhαrb

. . . F
(n−1)
r coshαr(bn − x)) cos pry

. (7)

In the above RN and TN are the reflection and trans-
mission coefficients for N barriers and F

(n)
r are un-

determined coefficients. These definitions ensure that
φx(b

+
n , y) = φx(b

−
n , y), |y| < d, n = 0, 1, 2, ..., N−1 and

we write

φx(bn, y) ≡ F (n)(y) =
∞
∑

r=0

F (n)
r cos pry (8)



whence (4) is used to give

F (n)
r =

1

ǫr

∫

L

F (n)(t) cos prt dt (9)

with ǫ0 = 2d, ǫr = d, r > 0. In particular,

ik(1−RN ) = F
(0)
0 , ikTN = F

(N−1)
0 . (10)

Continuity of pressure across the gap in the nth barrier
demands φ(b+n , y) = φ(b−n , y), y ∈ L and gives, after
using (5), (6), (7) and (9), n = 1, 2, . . . , N − 2,

∫

L

(

F (n+1)(t)K1(y, t)− 2F (n)(t)K2(y, t)

+ F (n−1)(t)K1(y, t)
)

dt = 0, (11)

and
∫

L

(

F (1)(t)K1(y, t)− F (0)(t)K3(y, t)
)

dt = 2, (12)

∫

L

(

F (N−1)(t)K3(y, t)−F (N−2)(t)K1(y, t)
)

dt = 0 (13)

all for y ∈ L, in which

K1(y, t) =

∞
∑

r=0

cos pry cos prt

ǫrαr sinhαrb
, (14)

K2(y, t) =

∞
∑

r=0

cothαrb cos pry cos prt

ǫrαr
, (15)

and

K3(y, t) =
∞
∑

r=0

(1 + cothαrb) cos pry cos prt

ǫrαr
. (16)

3. The single barrier approximation

This generic problem forms the basis of the approach
to the N -barrier problem. It is straightforward to show
that R1+T1 = 1 and that the horizontal velocity across
L, F (0)(y) satisfies

∫

L

F (0)(t)K(y, t) dt = −R1, y ∈ L, (17)

with
∫

L

F (0)(t) dt = 2ikd T1 (18)

where

K(y, t) =

∞
∑

r=1

cos pry cos prt

αrd
. (19)

Note that the term r = 0 does not appear here. At this
point we exploit the assumption that a/d ≪ 1 so that
the kernel K(y, t) is dominated by a logarithmic term.
Thus, we can write (e.g. Jones (1986) equn. (16.1))

K(y, t) = −
1

2π
ln 2| cos(πy/d)− cos(πt/d)|

+

∞
∑

r=1

( 1

αrd
−

1

rπ

)

cos pry cos prt (20)

so that for y, t → 0

K(y, t) ∼ −
1

2π
ln |y2 − t2|+

1

π
(S − ln(π/d)) (21)

where

S = π

∞
∑

r=1

( 1

αrd
−

1

rπ

)

. (22)

Substituting (21) into (17) and using the fact that
F (0)(y) is even in y, gives

∫

L

F (0)(t) ln |y − t| dt = A, y ∈ L, (23)

where A = πR1 + (S − ln(π/d))
∫

L F (0)(t) dt. The sin-

gular integral equation (23), where F (0)(y)(a2 − y2)1/2

is bounded, has an explicit solution, but all we require
is the result

∫

L

F (0)(t) dt = A/ ln(a/2). (24)

For a proof see Cooke (1970), and, for applications in
water waves, Evans (1975), and Packham & Williams
(1972) who also describe a three-dimensional version.
It follows from (18), (23) and (24) that

T1 = cos δeiδ

R1 = −i sin δeiδ

}

tan δ = 2κ(S(κ)− ln ν) > 0

(25)
where

κ = kd/π < 1, ν = πa/2d. (26)

The phase of T1 will play a key role in the general
theory and we make use of the result which follows
from the above that if

∫

L

F (n)(t)K(y, t) dt = C, y ∈ L, (27)

then for y, t → 0

1

2d

∫

L

F (n)(y)dy = F
(n)
0 = kC cot δ. (28)

4. Solution for N barriers

Returning to the general case we have, from (14) to
(16), as y, t → 0,

K1(y, t) ∼
(−cosec kb+ E1)

2kd
, (29)

K2(y, t)−K(y, t) ∼
(− cotkb+ E2)

2kd
, (30)

and

K3(y, t)− 2K(y, t) ∼
(− cot kb+ E2 + i)

2kd
, (31)

where

E1 =
∞
∑

r=1

2kd

αrd sinhαrb
, E2 =

∞
∑

r=1

2kde−αrb

αrd sinhαrb
(32)



where the Ei → 0 as b/d → ∞, i = 1, 2. Substituting

in (11)–(13), using (28) and defining F
(n)
0 = kµn gives

µn+1 − 2 cosαµn + µn−1 = 0, n = 1, 2, . . . , N − 2
(33)

and
(p+ i)µ0 + 2 = qµ1, (34)

(p+ i)µN−1 = qµN−2. (35)

In the above

p = 2 tan δ − (cotκλ− E2), q = (−cosecκλ+ E1)
(36)

with κ = kd/π, λ = πb/d and

cosα =
(cosα0 − E2 sin kb)

(1− E1 sinkb)
(37)

where

cosα0 =
cos(δ + kb)

cos δ
≡

cos(δ + kb)

|T1|
. (38)

Clearly α → α0 as Ei → 0 which corresponds to
b/d → 0 or a wide-spacing approximation (WSA). For
parameter values such that | cosα| < 1 it turns out
we are in a pass-band which ensures wave transmission
through the periodic array. For other values we are in
a stop-band and transmission is not possible. See for
example Linton & McIver (2001) equn. (6.52).
Finally,

RN = 1 + iµ0, TN = −iµN−1. (39)

The solution of (33) satisfying (35) is, for n =
0, 1, 2, . . . , N − 1,

µn = µN−1

(

(p+ i)UN−n−2 − qUN−n−3

)

/q (40)

where Un(α) = sin(n + 1)α/ sinα, so that U−2 = −1,
U−1 = 0, U0 = 1. Thus from (39)

RN = 1 + iµ0 =
qµ1 − (p− i)µ0

qµ1 − (p+ i)µ0
(41)

after using (35). Now (40) can be used to show

RN =
(p2 + 1)UN−2 − 2pqUN−3 + q2UN−4

(p+ i)2UN−2 − 2q(p+ i)UN−3 + q2UN−4
.

(42)
Similarly

TN =
2iq

(p+ i)2UN−2 − 2q(p+ i)UN−3 + q2UN−4
. (43)

The above expressions turn out to hold for N = 2 also
where only (32) and (33) are required. The energy con-
dition |RN |2 + |TN |2 = 1 can be shown to be satisfied
exactly after some algebra.
It is clear from (43) that TN = 0 if q = 0 for all N > 1
which is obvious on physical grounds. Less obvious is

the fact that the condition is independent of the small-
ness of the gap. Now from (36) and (32), q = 0 implies

sinκλ =

[

∞
∑

r=1

2κ

(r2 − κ2)1/2 sinhλ(r2 − κ2)1/2

]−1

.

(44)
It is clear that provided the right-hand-side of (44) is
less than unity, solutions of the form λ(κ) exist, but
that there will be a cut-off at, say, λ = λc(κ) above
which no solution is possible. This is consistent with
the WSA valid for large λ which predicts no solution.
The vanishing of |TN | for any N > 1 is an unusual
phenomenon, rare in water wave problems which was
first shown by Evans & Morris (1972) in considering
the scattering of waves by a pair of partially-immersed
vertical barriers. For detailed and accurate computa-
tions see Porter & Evans (1995). However, it is the
phenomenon of total transmission which is the main
interest in this paper, particularly in the light of the
assumption of small gaps. Thus the numerator in (42)
is real so it can be expected that RN = 0 for certain
values of p, q, and α. As a special case we consider
wide barrier spacing when the Ei in (32) tend to zero.
After considerable algebra it can be shown that (42)
and (43) become

RN =
UN−1R1

UN−1 − T1eikbUN−2
(45)

TN =
T1

UN−1 − T1eikbUN−2
(46)

in agreement with Martin (2014) equn. (21). The con-
dition RN = 0 for total transmission is now simply
UN−1(α0) = 0 or α0 = mπ/N , m = 1, 2, . . . , N − 1 so
that from (38)

cos
mπ

N
=

cos(δ + kb)

cos δ
, m = 1, 2, . . . , N − 1. (47)

Thus for example, for N = 2 we have cos(δ + kb) = 0
or δ + kb = (2p− 1)π/2, p an integer.

5. Results

In Fig.1 the solid lines describe the variation of |R1|
with kd for gap sizes a/d = 0.1, 0.2, 0.3, 0.4 using an ac-
curate numerical method described in Porter & Evans
(1995). The crosses are computed using the small-gap
result given in (25). The agreement for a/d = 0.1 is
excellent over the whole range of kd < π and this value
together with kd = 1 will be used in the further com-
putations for multiple barriers.
The result (47) shows that a WSA approximation pro-
vides N − 1 equations to determine when RN = 0 and
|TN | = 1 for each region in which cosα0 < 1 and we
are in a pass-band, and we might expect that to be the
case generally when the numerator of (42) vanishes.
This is confirmed in Fig. 2 where N = 4 and a/d = 0.1
throughout. The solid lines show, in (kd, b/d)−space,
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Figure 1: Comparison of small gap approximation
against exact results for a single barrier.

where R4 = 0 and the crosses are based on the WSA.
Thus for example for kd = 1 as b/d increases there are
three different spacings at which R4 = 0 followed by
a gap before a further three cut in and so on. Alter-
natively, Fig. 2 shows that at a given spacing there
are three distinct wavenumbers for which total trans-
mission occurs with further groups of three at higher
frequencies occurring for larger spacings. It is also clear
that for most purposes the WSA is entirely adequate
in predicting the results. The solution for b/d . a/d is
less clear as it conflicts with the small-gap approxima-
tion. Also shown in Fig. 2 is a dotted line on which
T4 = 0 derived from (44) and which has no counterpart
in a WSA. It is possible to consider a semi-infinite ar-
ray of barriers by ignoring condition (35) and assuming
µn = Ae±inα as a solution of (33) whence (34) gives

R∞ =
qe±iα − (p− i)

qe±iα − (p+ i)
(48)

the sign chosen so that |R∞| does not exceed unity.
The WSA counterpart of (48) requires replacing α by
α0. Fig. 3 shows a plot of |R4| and |R∞| against b/d
based on the exact small-gap theory with the WSA
results overlaid. It shows clearly the triplets of zeros
of R4 separated by stop bands.
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