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Highlights

• Presentation of an HOS scheme for modelling non-
linear water waves over a variable bathymetry.

• Validation of the method for a small variation of the
bottom with Bragg reflection.

• Application of the HOS model to wave propagation
over a bathymetry with high variation of the bottom:
submerged bar.

Introduction

The accurate modelling of surface gravity waves over
non-negligible bottom topography is of major interest
in the field of marine renewable energy. These marine
renewable structures are intended to be located in limited
water depth, where the effect of variable bathymetry is
very significant on local wave conditions. Indeed, when
entering shallow water, waves are strongly affected by the
bottom through shoaling, refraction, diffraction, reflection
and the resulting variations in local wave speed.

In [8] two different schemes for modelling a bathymetry
with a High-Order Spectral (HOS) method have already
been presented. This highly non-linear potential model
has been initially developed [16, 5] for a flat bottom and
extensively validated for different configurations in the
LHEEA Lab [7, 6] from regular waves up to irregular
multidirectional wavefields. This model, named HOS-
ocean is available as an open-source version1. In the
present paper, we focus on the efficient scheme allowing
the use of FFTs presented in [8].

A few HOS applications consider a variable bathymetry.
Liu and Yue [10] provided one simulation case with a
bottom variation using the HOS method, but considering
only a small variation of the bottom. This case reproduces
Class I Bragg reflection and will be presented here as a
validation of our model. The second case presented in
this paper is more extreme with large bottom variations.
Nevertheless, our method shows good results which
are compared both to experimental results [11, 4] and
numerical results obtained with other methods [1, 9].

1https://github.com/LHEEA/HOS-ocean/wiki

Methods and Algorithms

Hypothesis and formulation of the problem

In this section, the main hypothesis and equations are
presented briefly. More details are available in [8].
z = η (x, t) represents the free surface elevation, h the

total water depth, h0 the mean depth and β (x) the bottom
variation, such as −h (x) = −h0 + β (x). Thus we have :
−h0+β (x) ≤ z < η (x). A potential flow formalism is used
(incompressible and inviscid fluid, irrotational flow) and
we assume periodic boundary conditions in the horizontal
plane so that the domain is considered infinite. We obtain
the following set of equations:

• Laplace equation in the fluid domain:

∆φ = 0 (1)

• Free-surface boundary conditions (FSBC) written

in terms of surface quantities η and φ̃ (φ̃ (x, t) =
φ (x, z = η, t)):
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• Bottom boundary condition (BBC):

∂φ

∂x

∂β

∂x
− ∂φ

∂z
= 0 on z = −h0 + β (x) (4)

To account for a bottom variation, an additional
potential is introduced. The total potential φtot solution
of the problem is expressed as:

φtot = φh0
+ φβ (5)

φh0 satisfies a Neumann condition on z = −h0, therefore
φh0

is solution of the problem at constant depth h0.
φβ allows the definition of the correct bottom boundary
condition (Eq.4) and satisfies a Dirichlet condition on
z = 0.

In 2D, the potentials are expanded on basis functions
taking into account the previous boundary conditions:

φh0 (x, z, t) =
∑
j

Aj (t)
cosh (kj (z + h0))

cosh (kjh0)
eikjx (6)



φβ (x, z, t) =
∑
j

Bj (t)
sinh (kjz)

cosh (kjh0)
eikjx (7)

with kj = j 2π
Lx

and (Aj(t),Bj(t)) the modal amplitudes of
φh0 and φβ respectively.

High-Order-Spectral Method

The HOS model is a pseudo-spectral model initially
developed in [16, 5]. The potential is expressed as a
truncated power series of components φ(m) for m = 0
to M (M is the order of the HOS method). Then, the
potential evaluated at the free surface is expanded in a
Taylor series with respect to the mean water level z = 0.
Combining these two expansions gives a triangular set of
Dirichlet problems for the components that can be solved
by means of a spectral method (allowing the use of FFT’s
for efficient computations). One more equation is needed

to find the modal amplitudes A
(m)
j1

(t) and B
(m)
j1

(t) at each
order m.

These are given by the iterative method described
hereafter (Fig.2). Once they are computed, the vertical
velocity W at the free surface can be obtained from
another triangular system. The solution φtot is then
advanced in time as described in Fig.1, with W computed
as represented in Fig.2.

The bottom condition (Eq.4) reads:
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By assuming that β << 1 we can write a Taylor
expansion with respect to the mean depth z = −h0 at the

order M. We also assume2 that O (β) ≡ O
(
∂β
∂x

)
≡ O (η)

and we keep only terms of order η(m). Thus we find the
equations presented in [10]:
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Perturbation expansions are truncated at order M . This
new development Eq.(9) allows the computation of the

modal amplitudes B
(m)
j1

(t) at each order in function of the

A
(m)
j1

(t), and is independent of the position x, so FFT’s
can still be used, preserving the numerical efficiency of
original HOS scheme as seen in [8].

Validations

In [8], a validation case has already been presented to
assess the domain of applicability of our method. It
allows to check the convergence of the scheme on the
reconstruction of the vertical velocity with a wide variety
of wave conditions and non-negligible (but constant)
bottom variations. Here we present a test case to
demonstrate the accuracy and efficiency of the proposed

2If Taylor expansions in η and β converge, the equality on the
orders of magnitude is meaningless.

Figure 1: Temporal solution of the FSBC.

Figure 2: Use of the BBC in the temporal solution.

HOS model with a variable bathymetry. As an example
of a small bottom variation, and in order to satisfy the
conditions of the Taylor expansion (β << 1), the proposed
test case considers Bragg reflection from a sinusoidal
bottom patch.

Bragg reflection

If the class I Bragg condition is satisfied, the reflected
wave should be amplified as a result of resonant quadratic
interaction between the incident wave and the bottom
variation. For small incident waves and small bottom
slopes, reflection near Bragg resonances is well predicted
by multiple-scale linearized perturbation theory [12]. Here
we analyse non-linear effects. The conditions of the
experimental set-up [3] are used to compare with their
experiments.
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Figure 3: bottom topography with a patch of 10 sinusoidal
ripples of amplitude d = 0.1 and slope kbd = 0.31.

The bottom patch is defined as the variation around the
mean water depth h = h0 + β(x) by :

β(x) = d sin(kbx) for − L0 ≤ x ≤ L0 (10)

as depicted in Fig.3, with kb the bottom wavenumber.
The free surface is located at z = 0. The ripple slope



is kbd = 0.31, the ripple amplitude is d = 0.1m and the
length of the patch is L0

λb
= 10 (i.e. a patch of 10 sinusoidal

ripples of wavelength λb = 2π
kb

). The incident wave is

at the linear resonance condition of k = kb
2 with a wave

steepness of ka = 0.05. In order to ensure periodicity
relaxation zones are used to impose the Rienecker and
Fenton solution at the beginning and at the end of the
domain.

We perform simulations with N
λ = 16 nodes per

wavelength and an orderM = 2 to obtain the steady-state.
This order of nonlinearity on the free-surface and on the
bottom variation is sufficient to obtain converged results,
because the Class I Bragg reflection is second order, as
explained in [10]. The local reflection coefficient is then
extracted using the method of Suh et al. [15].

The results appear in Fig.4 along with the experimental
measurements of [3] and the solution given by the linear
perturbation theory of [12]. It appears clearly that our
numerical results are very closed to both the linear theory
and the experiments. We will now focus on the next test
case with a higher bottom variation, to check the ability of
the proposed method is able to treat realistic bathymetry
profiles with non-negligible variations.
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Figure 4: Bragg reflection from a sinusoidal bottom ripple
patch over −5λb ≤ x ≤ 5λb. ka = 0.05 and kbd = 0.31.

Application: harmonic generation
over a submerged bar

Here we consider the transformation of non-linear regular
waves as they travel up and over a submerged bar. As
they propagate over the bar, they steepen and they
decompose into higher-frequency free waves, as shown in
the experiments [4, 11]. These higher harmonics produce
an irregular pattern behind the bar. This validation case
is particularly difficult because it requires the accurate
propagation of waves in both deep and shallow water.
Thus it is often used as a discriminating test case for non-
linear models of surface waves propagation over a variable
bottom [9, 1]. The bottom variation is defined by

β (x) =


0.05 (x− 6) for 6 ≤ x ≤ 12,
0.3 for 12 ≤ x ≤ 14,
0.3 − 0.1 (x− 14) for 14 ≤ x ≤ 17,
0 elsewhere,

and can be seen in Fig.5. It has been scaled with a factor
of two in comparison with Dingemans experiments [4].

Figure 5: Submerged bar (Dingemans experiments).

Regular waves are generated at the left side of the
domain thanks to a solution of Rienecker and Fenton
[13] of steepness ka = 0.0168 and relative water depth
kh = 0.6725. The period is fixed to 2.02s with an
amplitude of 0.01m.

The convergence and steady-state are reached with 40
nodes per wavelength and an HOS order M = 17. Indeed,
such a high-order is needed to represent all the non-
linearities induced by the bottom variation.

Time series of surface elevations.

A snapshot of the surface elevation (scaled by a factor of
3) is represented in Fig.6 and the time histories of the
surface elevations at various locations are shown in Fig.7.
The experimental data comes from the experiment of [11].

The comparison between our numerical results and the
experimental data is very good, and similar to the results
obtained with other numerical methods [9, 1]. Thus, both
free-surface non-linearities and bottom non-linearities are
correctly solved and we are confident in the accuracy of
the model even for large bottom variations.

Figure 6: Snapshot of the surface elevation at steady-state.

Harmonic analysis.

For a deeper comparison, an harmonic analysis of the
surface elevation is run as presented in [1]. Our results
are visible in Fig.8.

As expected, we can clearly observe the generation of
high-harmonics over the bar. Moreover, the comparison
of all harmonics with the measurements is good even
up to the fifth-harmonic. It is also very similar to the
numerical results presented in [1], particularly on the
slight discrepancies observed on the first harmonic. We
can notice that even if β

h0
= 75% over the submerged bar

(which represents a very large relative bottom variation),
the steepness is weak (ka = 0.017), and the bottom
variation does not take place on all the domain, so the
model is able to solve this problem accurately.
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Figure 7: Time series of measured (points) and computed
(lines) surface elevations.
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Figure 8: Harmonic analysis. N
λ = 40 and M = 17.

.

Conclusion

We have implemented a numerical method for the
simulation of non-linear free surface waves over variable
depth. It is based on a Taylor expansion of the bottom
boundary condition with respect to the mean water depth.

A validation case with a constant bottom variation
has already been presented in [8] to assess the domain
of applicability of our method. By a series of two
test cases, we have shown the accuracy of the method
for non-constant bottom variations. The first test case
reproduces Bragg reflection over small bottom variations
and shows results conformed to [10, 1, 9]. The last case
simulates highly and realistic varying bottom geometries.
It shows very good agreement with both numerical and
experimental data, and thus proves the ability of the
method to accurately compute high variations of the
bathymetry.

The required HOS order is very high for the harmonic
generation over a submerged bar, and the bottom and the
free-surface do not seem to require expansions with the
same order of non-linearity. Thus we will try to improve
the method by decoupling the orders of non-linearities

on the free-surface and on the bottom to enhance the
efficiency of our model. This has been presented with
the DNO method [9, 2], a formalism which exhibits a
formalism similar to the HOS method [14].
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