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• ship internal wave wakes at supercritical speed;
• strongly nonlinear interfacial model accounting for realistic ship geometries of draught
comparable to the average depth of the pycnocline;
• similarities and differences between two- and three-layer fluids;
• numerical wake-induced amplitudes, currents, strain rate, with comparison to field experi-
ments.

Background. There is a recent interest in internal wave wakes, generated by a ship moving
in a stratified sea, at supercritical speed (Daniel Bourgault, 2014, personal communication).
Watson et al. (1992) gives a summary of this research up to that date. Recent analyses and
calculations given in the IWWWFB-community are obtained applying pressure distributions
(Parau et al., 2007). Watson et al. (1992) analysed aspects of the ship generated internal
waves using data from a set of experiments, with three different ships, in Loch Linnie, Scotland
in 1989. They presented results for the wave wake amplitudes, wake-induced currents and
quantity such as the strain rate at the sea surface. While existing models, at that time,
basically assumed ships of very small draught, Watson et al. requested prediction tools
that could allow for a finite draught of the ship. Such calculations are performed in the
present account, with realistic ship models of draught comparable to the average depth of
the pycnocline (see figure 3a,b).

Nonlinear interfacial model. Let x = (x1, x2) denote horizontal coordinates and y be
vertical. y = 0 coincides with the interface at rest. A two-layer fluid has constant densities
ρ0 and ρ1 = ρ0+∆ρ, where index 0 refers to the upper layer and index 1 to the lower. Layer
depths at rest are h0 and h1, respectively. Assuming incompressible and irrotational motion
in each of the layers, the fluid motion is governed by Laplacian potentials φ0 and φ1. The
position of the ship geometry moving in the upper fluid, with speed U along the x1-direction,
is determined by y = h0 + δ(x, t) where δ(x, t) determines the hull shape. The boundary
condition at the ship geometry is given by δt +WF = 0 where WF = U · ∇δ. The boundary
of the upper fluid is denoted by F and is represented by a rigid lid at positions not occupied
by the ship.

The interface, denoted by I, is determined by y = η(x, t). Values of the potentials
along I are introduced by φ0I(x, t) = φ0(x, y = η, t) and φ1I(x, t) = φ1(x, y = η, t) on I,
where indexes 0I and 1I indicate evaluation on the upper and lower side of the interface,
respectively. Difference and sum potentials along I are introduced, where

Ψ(x, t) = φ1I(x, t)− µφ0I(x, t) and Φ(x, t) = φ0I(x, t) + φ1I(x, t) at I, (1)

and µ = ρ0/ρ1. The interfacial motion and potential Ψ along I are integrated forward in
time using the kinematic and dynamic boundary conditions at the interface:

ηt = VI = WI , Ψt + g(1− µ)η = NL2 at I, (2)



where NL2 accounts for the full nonlinearity, WI = (∂φ0/∂n)
√

1 + |∇η|2 and VI = (∂φ1/∂n)
√

1 + |∇η|2. Solution of the Laplace equation in each layer is obtained by use of Green’s
theorem. WI , VI and φ0F , where the latter denotes the potential along the upper boundary

F of fluid 0, including the ship surface, are expanded by WI = W
(1)
I + W

(2)
I + ..., VI =

V
(1)
I + V

(2)
I + ..., φ0F = φ

(1)
0F + φ

(2)
0F + ... In Grue (2015) it is shown that the quadratic

approximation, i.e. truncating after the leading two terms of the expansions, fully accounts
for the interfacial nonlinearity, for excursions η corresponding to the thinner layer depth.
This approximation is used here.

Two- and three-layer fluids. The dispersion relation for a two-layer fluid reads (ck1)
2 =

g(1− µ)k1/[µ coth(k1h0) + coth(k1h1)], where k1 denotes wavenumber and c(k1) wave speed
(figure 1b). The dispersion relation for a three-layer fluid, where a pycnocline of thickness
γ separates an upper mixed layer from a lower mixed layer, reads K2

γ − k1[coth(k1H0) +
coth(k1H1)]Kγ cot(Kγγ)− k21 coth(k1H0) coth(k1H1) = 0, where K2

γ = N2
0 /c

2− k21 and N2
0 =

−(g/ρ)(∂ρ/∂y) denotes the buoyancy frequency, assumed to be constant in the three-layer
model, see figure 1a, where also symbols are defined. The limit k1 → 0 obtains the linear
long wave speed c0. The wave phase speed c(k1)/c0 and group velocity cg(k1)/c0 for the two-
and three-layer fluids show small differences for kh0 up to 0.7 (figure 1c).

Wave patterns and amplitudes. Ship geometries have a hull shape of δ = −b0[1 −
(x1/(l0/2))

6 − (x2/(w0/2))
6], where (l0, w0, b0) denotes (length,width,draught). Calculations

with l0/h0 = 14.7, w0/h0 = 4 and b0/h0 = 1.2 obtain the wave pattern for supercritical flow
at speed Fr = U/c0 = 8 (figure 2a). The pattern corresponds excellent to the patterns
obtained by a linear kinematics analysis, for two- and three-layer fluids (Keller and Munk,
1970). Nonlinear calculations of the wave trough amplitudes show a small leading trough.
Wave troughs number 2, 3, 4 and 5 have a common amplitude of ∼ 0.1h0, for a lateral
distance of x2 ∼ 100h0. The wave troughs follow power laws, i.e. ηmin = βx−α

2 (figure 2b).

Other wake properties. A model similar to one of the ships in Watson et al. (1992) has
a length of 38h0, width of 6.5h0 and draught of h0. A mid depth of the pycnocline, in the field
experiment, can be estimated to h0 = 3.06 m. Calculations show the nonlinear interfacial
depression and elevation below and right behind the ship (figure 3a,b), and the ship wake
(figure 3c). Watson et al. showed measurements, obtained at an off-track distance of 55h0, of
the cross-track current, u2, and the strain rate, ∂u2/∂x2, both at the sea surface, obtaining
u2/c0 up to about ∼ ±0.1, and (∂u2/∂x2)/(c0/h0) up to about ∼ ±0.05. The present
calculations are very similar (figure 3d-f). In the simulations, wave tanks of lengths/widths
of 300/300, 700/260, 500/400, have ∆x1/h0 ∼ 0.4− 0.8 and ∆x2/h0 ∼ 0.3− 0.4.
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Figure 1: a) Sketch of theoretical three-layer fluid. b) Two-layer fluid. c) Wave phase
speed c(k1) and group velocity cg(k1), both normalized by the linear long wave speed of
the respective density profiles. Two-layer configuration with h1/h0 = 18 (solid line) and
three-layer configuration with H1/H0 = 27.5, γ/H0 = 1 (dotted line).
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Figure 2: a) Nonlinear two-layer calculation of wake trough pattern (symbols); linear two-
layer kinematics model with Keller-Munk equations (black solid line); linear three-layer kine-
matics model with Keller-Munk equations (red solid line). b) Trough amplitudes: trough 1
(∗), trough 2 (•), trough 3 (square), trough 4 (×), trough 5 (+). Fr = 8. Ship model with
length 29.4h0, width 4h0, draught 1.2h0.
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Figure 3: Interfacial wake properties for ship at Fr = 6. a) elevation η and hull geometry
along centerplane of ship; b) η at two lateral cuts, at (x1 − Ut)/h0 = 10 (solid line) and
(x1−Ut)/h0 = −30 (dots) with ship geometry at mid beam (red solid line); c) η(x1−Ut, x2);
d) cross-wake elevation η for (x1−Ut)/h0 = −504; e) cross-wake velocity u2 for (x1−Ut)/h0 =
−504; f) strain-rate ∂u2/∂x2 for (x1 − Ut)/h0 = −504. Ship model with length 38h0, width
6.5h0, draught 1h0.


