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Abstract

With a semi-analytical accurate computation method and
model experiment, a study is made on the phenomenon of
cloaking a floating cylinder by surrounding it with a finite
number of smaller circular cylinders uniformly spaced on
a circle concentric with the inner cylinder. It is shown
that when the optimization of the geometrical parameters
of surrounding cylinders is realized to minimize the total
scattered-wave energy, the wave drift force reduces to nearly
zero not only on the entire bodies but also on the inner cylin-
der and outer surrounding cylinders individually.

1. Introduction

Cloaking phenomenon is attracting attention recently in
wave-body interaction problems on the free surface. ‘Cloak-
ing’ refers to the condition that there is no wave scatter-
ing in the form of radial outgoing waves. Originally this
phenomenon was studied by Pendry et al. (2006) in elec-
tromagnetic fields. Newman (2013) has also analyzed the
phenomenon of cloaking a circular cylinder of finite draft by
surrounding it with an array of smaller cylinders. He has
shown numerically that the scattered-wave energy can be
reduced to substantially zero by optimizing the geometrical
parameters of the cylinders concerned and that the mean
drift force on the entire bodies becomes also very small.

The present paper is concerned with the same problem,
but care is paid on the accuracy of the solution by adopting
Kagemoto & Yue’s theory (1986) combined with a higher-
order boundary element method (HOBEM). By express-
ing the solution with the cylindrical coordinate system and
Graf’s addition theorem for Bessel functions, it is made pos-
sible to compute the wave drift force not only on the entire
bodies but also on each of the bodies in the array, only in
terms of the complex amplitude coefficients of scattered and
incident waves. Optimization of the geometrical parameters
of the cylinders is performed using the real-coded genetic
algorithm (RGA) such that the total scattered-wave energy
is minimized.

In order to confirm correctness of computed results, a
model experiment is also conducted for an optimized con-
figuration at the normalized wavenumber Kd0 = 1 (where
d0 is the draft of the central circular cylinder), measuring
the wave drift forces and also the spatial distribution of the
wave elevation. It is confirmed that when the cloaking phe-
nomenon occurs, the wave drift force becomes very small not
only on the entire bodies but also on the inner cylinder and
outer surrounding cylinders individually.

2. Theory for Computation

2.1 Velocity potential

We consider a number of vertical circular cylinders of fi-
nite draft (total number equal to M), specifically a central
cylinder (radius r0 and draft d0) is surrounded by smaller
N (= M − 1) cylinders of same size with radius r and draft
d which are uniformly spaced on a circle of radius R0, con-
centric with the inner cylinder.

To analyze multiple wave interactions among these float-
ing bodies, the linearized potential-flow problem is con-
sidered with coordinate systems shown in Fig. 1; where
in addition to the global coordinate system O-rθz (where
x = r cos θ and y = r sin θ) fixed at the central circular
cylinder, the local coordinate system Ok-rkθkz is consid-
ered, with its origin placed at the center of the k-th body.
The z-axis is positive vertically downward, and the plane of
z = 0 is placed on the undisturbed free surface.

Let us consider the diffraction problem with the velocity
potential expressed in the form

Φ(P ; t) = Re
[
gζa
iω

{
φI(P ) + φS(P )

}
eiωt

]
. (1)

Here P = (r, θ, z) denotes a field point in the fluid; g is
the gravitational acceleration; ζa and ω are the amplitude
and circular frequency of an incident wave, respectively; Re
means the real part to be taken.

The velocity potential of incident wave φI(P ), propagat-
ing in the direction with incident angle β relative to the pos-
itive x-axis, can be expressed in the cylindrical coordinate
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Fig. 1 Coordinate system and notations.



system as follows:

φI(P ) =

∞∑
m=−∞

αm Z0(z) Jm(k0r) e
−imθ (2)

where
αm = eim(β−π/2), Z0(z) =

cosh k0(z − h)

cosh k0h
(3)

k0 tanh k0h =
ω2

g
≡ K (4)

with the fluid depth assumed constant and denoted as h.
The velocity potential φS(P ) in (1) is the scattering po-

tential due to body disturbance. Since there are M bodies
in the present analysis, it can be written as follows:

φS(P ) =

M∑
ℓ=1

φℓ
S(P ) ≃

M∑
ℓ=1

∞∑
n=−∞

Aℓ
nZ0(z)H

(2)
m (k0rℓ) e

−inθℓ

=

∞∑
m=−∞

Am Z0(z)H
(2)
m (k0r) e

−imθ (5)

where
Am =

M∑
ℓ=1

∞∑
n=−∞

Aℓ
n Jn−m(k0Lℓ0) e

−i(n−m)αℓ0 (6)

Evanescent wave components are ignored in (5) for brevity,
and the complex amplitude of the scattered progressive
wave around the ℓ-th body is denoted as Aℓ

n, which is
computed accurately with higher-order boundary element
method (HOBEM) for computing the diffraction character-
istics of elementary bodies and the wave-interaction theory
of Kagemoto & Yue (1986). Here Jm(k0r) and H

(2)
m (k0r)

denote the first kind of Bessel function of order m and the
second kind of Hankel function of order m, respectively.
The complex amplitude Am in the global coordinate system,
given by (6), is obtained through the coordinate transforma-
tion (see Fig. 1 for notations) and associated Graf’s addition
theorem for Bessel functions.

To summarize the above, the total velocity potential valid
at a distance outside of all bodies can be given as the sum
of (2) and (5) in the form

ϕ(P ) ≡ φI(P ) + φS(P )

=

∞∑
m=−∞

[
αmJm(k0r) +AmH(2)

m (k0r)
]
Z0(z) e

−imθ (7)

For computing the wave drift force on each body, say on
the ℓ-th body, we need an expression of the velocity poten-
tial valid around the ℓ-th body, in which the incident wave
consists of not only the wave expressed by (2) coming from
the outside but also disturbance waves due to other bodies.
Thus it can be written with the ℓ-th local coordinate system
in the form

ϕℓ(P ) ≡ φℓ
I(P ) + φℓ

S(P )

=

∞∑
m=−∞

[
αℓ
mJm(k0rℓ) +Aℓ

mH(2)
m (k0rℓ)

]
Z0(z) e

−imθℓ (8)

where
αℓ
m =αm e−ik0(xoℓ cos β+yoℓ sin β)

+

M∑
k=1
k ̸=ℓ

∞∑
n=−∞

Ak
n H

(2)
n−m(k0Lkℓ) e

−i(n−m)αkℓ (9)

and the second line in (9) is given with the coordinate trans-
formation and associated Graf’s addition theorem for Bessel
functions.

2.2 Wave drift force and scattered-wave energy

According to the far-field method, the wave drift force can
be computed from quadratic products of the total velocity
potential valid at a distance from the body concerned. When
the velocity potential is expressed with the cylindrical coor-
dinate system, like (7) or (8), the integrals with respect to θ
and z appearing in the formula by the far-field method can
be analytically performed at a certain appropriate distance
of r (where evanescent waves can be practically neglected),
with the Wronskian relations for Bessel functions applied.
After this kind of analytical integrations using (7), the cal-
culation formula for the wave drift force on the entire bodies
is given in the following complex form:

F x − iF y

1
2
ρgζ2ad0

=
i

C0Kd0

∞∑
m=−∞

[
2AmA∗

m+1

+αmA∗
m+1 + α∗

m+1Am

]
, (10)

where C0 =
k0

K + (k2
0 −K2)h

. (11)

In the same way using (8), the wave drift force on the
ℓ-th body can be computed from

F
ℓ
x − iF

ℓ
y

1
2
ρgζ2ad0

=
i

C0Kd0

∞∑
m=−∞

[
2Aℓ

mAℓ∗
m+1

+αℓ
mAℓ∗

m+1 + αℓ∗
m+1A

ℓ
m

]
. (12)

Here the asterisk in superscript stands for the complex con-
jugate. It should be noted that hydrodynamic interactions
among all bodies are exactly taken into account by includ-
ing evanescent-wave effects in computing the complex am-
plitude of scattered waves, because Kagemoto & Yue’s wave-
interaction theory combined with HOBEM is adopted in the
present theory.

Minimizing the scattered-wave energy may be used as an
objective function in optimization of the parameters of outer
surrounding circular cylinders. The scattered-wave energy
can be computed with the same procedure as that used for
computing the wave drift force. In the diffraction problem,
the result can be expressed as

ES

ρgζ2a
ω
k0

=
1

KC0

∞∑
m=−∞

∣∣Am

∣∣2 . (13)

3. Numerical Results

First, the real-coded genetic algorithm (RGA) was applied
so as to minimize the total scattered-wave energy of all bod-
ies, to be computed by (13), at the normalized wavenumber
K = 1. (All parameters with length scale are nondimension-
alized with the draft of central circular cylinder d0.) Com-
puted parameters of outer circular cylinders (r, d, R0) are
shown in Table 1; where ES/ES0 denotes the energy ratio,
with ES0 being the energy of scattered wave by the central
cylinder alone.

Figure 2 shows the contour map of scattered-wave am-
plitude at K = 1 for the case of surrounding 8 bodies
(N = 8, M = N + 1 = 9). It can be seen that no scat-
tered waves exist outside of the entire bodies and almost all
scattered waves are trapped between the central and sur-
rounding bodies even for the case of N = 8.



Table 1 Optimized parameters of outer cylinders to mini-
mize the total scattered-wave energy.

N r d R0 ES/ES0

4 0.2931 0.3509 2.2156 0.2948

8 0.2929 0.4834 2.2000 0.0254

16 0.1960 0.4871 2.1483 0.0199

32 0.1311 0.4506 2.1051 0.0127
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Fig. 2 Contour map of scattered-wave amplitude at K =
1.0 for the case of N = 8 shown in Table 1.
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Fig. 3 Wave drift forces on the entire structure of N = 8
configuration and separate components acting on
the inner cylinder and outer surrounding cylinders.
The broken line is the force on the inner cylinder
alone (N = 0).

The wave drift force is associated with the scattered wave,
as observed by (10) and (11). However, it is not obvi-
ous whether the wave drift force becomes zero, when the
scattered-wave energy of (13) is zero. Computed results for
the wave drift force are shown in Fig. 3 for the case of N = 8.
We can see at K = 1 that not only the force on the en-
tire bodies (indicated by solid line) but also the individual
components acting on the inner and outer bodies are also

almost zero. This is because the scattered-wave pattern,
shown in Fig. 2, looks symmetric with respect to the y-axis
penetrating the center of inner cylinder and orthogonal to
the direction of incident-wave propagation.

4. Experimental Confirmation

A model experiment has been conducted, corresponding to
the numerical computations for the case of surrounding 8
circular cylinders. A photo of the model set in the wave basin
is shown in Fig. 4, where the radius (r0) and draft (d0) of the
central circular cylinder were selected as r0 =0.134m and
d0 =0.240m. By referring to computed results at K = 1,
the parameters of outer circular cylinders are selected as
shown in Table 2.

Fig. 4 Experimental model set in a wave basin.

Table 2 Parameters of outer circular cylinders used in the
model experiment.

Radius r 0.070 m (r/d0 = 0.292)

Draft d 0.120 m (d/d0 = 0.500)

Distance R0 0.515 m (R0/d0 = 2.146)

It should be noted that the length ratios shown in Table 2
are slightly different from corresponding normalized values
in Table 1 for N = 8, on account of practical limitation in
selecting materials for circular cylinders.

Although the wave elevation was measured at a number
of different points, the results are shown only for the wave
drift force acting on the central cylinder and also on each
of outer surrounding cylinders (4 bodies due to symmetry).
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Fig. 5 Arrangement and numbering of outer cylinders.



Computation (No.1)

Experiment (No.1)

0.0 0.5

0.5

0.4

0.3

0.2

0.1

0.0

- 0.2

- 0.1

1.0 1.5 2.0
K

Computation (No.2)

Experiment (No.2)

0.0 0.5

0.5

0.4

0.3

0.2

0.1

0.0

- 0.2

- 0.1

1.0 1.5 2.0
K

Computation (No.3)

Experiment (No.3)

0.0 0.5

0.5

0.4

0.3

0.2

0.1

0.0

- 0.2

- 0.1

1.0 1.5 2.0
K

Computation (No.4)

Experiment (No.4)

0.0 0.5

0.5

0.4

0.3

0.2

0.1

0.0

- 0.2

- 0.1

1.0 1.5 2.0
K

Fig. 6 Wave drift forces on each of outer cylinders (No. 1 through No. 4).
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Fig. 7 Wave drift forces on outer cylinders, inner cylinder, and all cylinders.

The outer cylinders are numbered with No. 1 through No. 4
from the downwave side, as depicted in Fig. 5.

We can see in Fig. 6 relatively good agreement between
computed and measured results, and at the cloaking fre-
quency of K = 1 the value of No. 4 cylinder becomes neg-
ative, whereas the corresponding value of No. 1 cylinder is
positive with almost the same magnitude. In fact, summing
up all values acting on the outer surrounding bodies, we can
obtain the result shown in Fig. 7, from which we can see that
the wave drift forces on both the inner cylinder and outer
surrounding cylinders are almost zero at K = 1.

5. Conclusions

Using a semi-analytical method with higher accuracy, the
occurrence of cloaking in the surface-wave problem was con-
firmed for an array of smaller cylinders which surround the
inner cylinder of finite draft. It was demonstrated that when
the cloaking is realized, the wave drift force becomes practi-
cally zero both on the inner and outer cylinders individually.
The wave pattern around the bodies was also computed and

a relationship between the wave pattern and zero drift force
at the cloaking frequency was noted.

Furthermore, a model experiment was conducted to con-
firm correctness of computed results, measuring hydrody-
namic forces and the spatial distribution of the wave ele-
vation around the bodies. Measured results for the wave
elevation and their comparison with computed results will
be presented at the Workshop.

References

[1] Pendry, JB, Schurig, D and Smith, DR (2006). “Control-
ling electromagnetic fields”, Science, Vol 312, pp 1780–
1782.

[2] Kagemoto, H and Yue, DKP (1986). “Interactions
among Multiple Three-Dimensional Bodies in Water
Waves: An Exact Algebraic Method”, Journal of Fluid
Mechanics, Vol 166, pp 189–209.

[3] Newman, JN (2013). “Cloaking a circular cylinder in
deep water”, Proc of 28th IWWWFB (L’Isle sur la
Sorgue, France), pp 157–160.


