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The present study is motivated by hydrodynamics of high-speed vessels and aircraft ditching on
the water surface, where the wetted part of the hull is streamlined and the hull is elongated in
the direction of the motion. Hydrodynamic loads over the wetted part of the elongated hull can
be estimated by using the 2D+T approximation [1]. In this approximation, the three-dimensional
nonlinear stationary problem is reduced to a two-dimensional transient problem of water entry and
exit. This two-dimensional problem can be linearized if both the draft of the body and the deadrise
angles of the body cross sections are small. For the stationary three-dimensional problem of a smooth
body moving at a constant speed along the water surface, it is convenient to introduce a vertical plane
perpendicular to the direction of the body motion and consider the unsteady two-dimensional flow in
this plane caused by the body passing through the plane. The intersection of the body surface with
this control plane provides a two-dimensional contour which changes its shape in time and interacts
with the water surface. For a three-dimensional body with smooth surface the penetration stage ends
when the two-dimensional contour stops expanding. During the next stage, which is referred below
as the exit stage, the contour contracts and exits from the water. The entry stage was investigated
in [2] by the modified Logvinovich model [3]. It was found that the theoretical results are very close
to the CFD results obtained by numerical simulations of the Navier- Stokes equations (see [4-6] for
details of the simulations). However, the theoretical results from [2] for the exit stage were not as
good as for entry stage. During the exit stage, the von Karman model was used in [2]. Recently a
linearized exit model was developed in [7]. The exit model is formulated in terms of the linearized
pressure with the condition that the speed of the contact points is proportional to the local speed of
the flow. This model does not account for the shape of the body but still corresponds quite well to
the CFD results from [4]. The model was developed further in [8] to account for a varying in time
acceleration of the body. The bodies in [7] and [8] were rigid and only vertical motions were allowed.
The two-dimensional problem of a body whose shape varies in time was studied in [2] for an expanding
and contracting circular cylinder. The numerical and theoretical forces were very close to each other
during the expansion (entry) stage but rather different during the contraction (exit) stage.

In the present paper, we apply the exit model from [7] to the bodies of varying shapes together
with corrections accounting for the shape of the body (see [2]) and nonlinear effects. The entry stage
is considered below within the original Wagner theory of water impact. It is known (see [2]) that
the MLM provides better prediction of the hydrodynamic loads during the entry but here we are
concentrated on the negative loads during the exit stage. In the next sections, we provide the solution
of the linearized exit model for a body of varying shape, introduce the correction terms and compare
the theoretical forces with the CFD results from [2]. Then we apply the model to the problem of
an ellipsoid which moves horizontally at a fixed penetration depth and compare the distributions of
the sectional forces and pressures with the CFD results. Finally we summarize our findings and draw
conclusions.



Exit model for a body shape of which varies in time
The linearized exit model [7] for a body with a shape that is described by the equation y = yb(x, t),

is formulated in terms of the acceleration potential ϕt(x, y, t):
∇2ϕt = 0 (y < 0), ϕt = 0 (y = 0, |x| > c(t)),

∂ϕt/∂y = yb,tt(x, t) (y = 0, |x| < c(t)), ϕt → 0 (x2 + y2 →∞), (1)

where y = 0 corresponds to the level at which the problem is linearized, the function yb(x, t) is given
and the function c(t) is calculated by using the condition that the velocity of the contact points c′(t)
is proportional to the local velocity of the flow at these points

dc/dt = γϕx[c(t), 0, t], c(0) = c0, (2)

where c0 is the solution of the equation yb(c0, 0) = 0. The coefficient γ is equal to two in the present
analysis as in all previous calculations (see [7,8]). The pressure is given by the linearized Bernoulli
equation p(x, y, t) = −ρϕt(x, y, t), where ρ is the water density, and the hydrodynamic force FL(t) is
given by (the subscript L stand for the linearized exit model)

FL(t) =

c(t)∫
−c(t)

p(x, 0, t) dx. (3)

The solution of the boundary problem (1) with the acceleration potential being continuous at the
contact points x = ±c(t), y = 0 is given by

ϕxt(x, 0, t) =
1

π
√
c2 − x2

p.v.

c(t)∫
−c(t)

yb,tt(ξ, t)

√
c2 − ξ2
ξ − x

dξ, ϕx(x, 0, t) =

t∫
0

ϕxt(x, 0, τ) dτ. (4)

Equations (3) and (4) yield the formula for the hydrodynamic force in term of the functions c(t) and
yb,tt(x, t)

FL(t) = −2ρc2(t)

π/2∫
0

yb,tt(c sin θ, t) cos2 θ dθ. (5)

Equations (2) and (4) provide the equation for the function c(t)

dc

dt
=
γ

π

t∫
0

( c(τ)∫
−c(τ)

yb,tt(ξ, τ)
√
c2(τ)− ξ2

ξ − c(t)
dξ

)
dτ√

c2(τ)− c2(t)
. (6)

To transform equation (6) to a form suitable for numerical integration, we introduce a function

H(t) =
2

π

c(t)∫
0

yb,tt(ξ, t)√
c2(t)− ξ2

dξ,

which plays a role of an averaged acceleration of the body. Then we introduce new unknown functions
σ(t) by c2(t) = c20(1− σ(t)) and f(σ) by

H(t) = f(σ)
dc2(t)

dt
= −c20f(σ)

dσ

dt
(7)

(see [7] for details). Then equation (6) can be written as

H
(
σ, t(σ)

)
= 2γc30(1− σ)f(σ)

σ∫
0

f(σ)√
σ − α

R
(
σ, α, t(α)

)
dα, (8)

H
(
σ, t(σ)

)
=

2

π

π/2∫
0

yb,tt

(
c0
√

1− σ sin θ, t(σ)
)
dθ, R

(
σ, α, t(α)

)
= 1− 2(σ − α)

L
(
σ, α, t(α)

)
H
(
α, t(α)

) ,

L
(
σ, α, t(α)

)
=

π/2∫
0

yb,tt

(
c0
√

1− α sin θ, t(α)
)
− yb,tt

(
c0
√

1− σ sin θ, t(σ)
)

(1− α) sin2 θ − (1− σ)
dθ.

For parabolic shapes with time-dependent curvature we have

yb(x, t) = B(t)x2 + h(t), H(σ, t) =
1

2
B′′(t)c20(1− σ) + h′′(t), L(σ, α, t) =

π

2
c20B

′′(t). (9)



Equations (7) and (8) serve to determine the functions f(σ) and t(σ), where 0 ≤ σ < 1. Equations
(7) and (8) are solved numerically by the generalized version of the algorithm from [8]. Note that the
hydrodynamic force (5) and the size of the wetted area predicted by (8) depend on the acceleration
of the body but not on its shape within the linearized exit model. In order to account for the shape
of the body and, at least partly, for the nonlinear terms in the Bernoulli equation, we use the ideas
from the modified Logvinovich model [3], where the pressure distribution along the wetted part of the
entering water contour is given by

p(x, yb(x, t), t) = −ρ
(
φt − φxyb,tyb,x/(1 + y2b,x) + (φ2x − y2b,t)/(2(1 + y2b,x))

)
.

In this formula, we neglect φx, yb,x and approximate

φt(x, t) ≈ ϕt(x, 0, t) + +vpty(x, 0, t)(yb(x, t)− yb(c, t)) = ϕt(x, 0, t) + yb,tt(x, t)(yb(x, t)− yb(c, t)).
The term yb(c, t), the splash-up height, indicates that the problem (1) is obtained by the linearization
on the splash-up level as in the generalized Wagner model. In the parabolic approximation (9), the
corrected pressure is given by

p(x, yb(x, t), t) = −ρφt + ρ(x2B′′ + h′′)(c2 − x2)B(t) + ρ(B′x2 + h′)2/2, (10)

where ϕt(x, 0, t) is given by Wagner theory at the entry stage and by the linearized exit model at the
exit stage. Correspondingly the force is decomposed as

F (t) = FL(t) + Fb(t), (11)

where FL(t) is given by the linearized models of entry and exit and the corrections term Fb(t) is ob-
tained by integration of the second and third terms in (11) over the wetted interval, −c(t) < x < c(t),
both during the entry and exit stages.

Numerical results
The introduced model is applied to the water entry and exit of an expanding and contracting

circular cylinder. This problem was studied numerically and by using the MLM during the expansion
stage and von Karman model during the contraction stage in [2]. The forces calculated numerically
and by the MLM during the expansion stage are very closed to each other, but the numerical and
theoretical predictions of the forces during the contraction stage are rather different. Here we are
concentrated on the contraction stage describing the expansion stage by the simplified model (10),
(11), where the cylinder was approximated by the parabolic contour (9). The conditions of calculations
are the same as in [2]. The non-dimensional forces for different ratios k = Rmax/R0, where Rmax is
the maximum radius of the cylinder and R0 is its initial radius, are presented in Fig. 1 as functions of
the non-dimensional time t∗, where F ∗ = Ft20/(4ρR

3
0(k − 1)2), t∗ = t/t0 and t0 is the duration of the

impact stage. Here line 1 corresponds to F ∗L(t∗) without any corrections of the linearized model, line
2 shows the total force F ∗(t∗) by (10) and (11), line 3 is for the total force F ∗(t∗) but the linearization
is performed at the equilibrium water level y = 0, and line 4 is for the CFD resulting force from [2].
Star stands for non-dimensional variables. It is seen that the present model provides the force closest
to the CFD results. Calculations were also performed for the actual shape of the cylinder without the
parabolic approximation to demonstrate the accuracy of the approximation (9).

Fig. 1 Non-dimensional forces acting on the expanding/contracting circular cylinder as functions of the

non-dimensional time for different values of the parameters k.



Finally we apply the developed model to a three-dimensional steady problem of a rigid ellipsoid

(x− Ut)2/a2 + y2/b2 + (z − h)2/c2 = 1

with semi-axes a, b and c, which is slightly submerged at c− h and moves along the water surface in
the x-direction with constant speed V within the 2D+T approximation. The hydrodynamic loads are
determined for each section of the body by using the Wagner theory if the section penetrates water,
and by the linearized exit model if the section exits from the water. The control plane is introduced
at x = a. The forces are calculated for sections of the body

z = zb(y, t) = h− c
√
τ(2− τ)− y2/b2, τ = Ut/a,

which are approximated by parabolic shapes (9). The distributions of the pressure at y = 0 and the
sectional forces are shown in Fig. 2 together with CFD results obtained within the Navier-Stokes three-
dimensional model without gravity and surface tension. Calculations were performed for a = 10m,
b = c = 1m and V = 50m/s. The present linearized model with corrections (10) and (11) over-predicts
the loads for the sections in entry but well corresponds to the CFD predictions for the sections in
exit. The loads for the sections in entry can be potentially improved by using the MLM and a local
three-dimensional model close to the jet overturning region.

Fig. 2 The hydrodynamic sectional force (on the left) and the pressure at y = 0 (on the right) as functions

of the longitudinal coordinate x. The correspondences of the lines are the same as in Fig. 1 (see the text).
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