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A fully nonlinear problem on unsteady water waves generated by submerged circular cylinder is considered
semi-analytically. Main purpose is to evaluate impact of non-linearity acting at early stage of non-stationary
wave motion when the cylinder accelerates impulsively near the free surface. Effect of non-linearity was
originally studied by Tuck [1] who used the Wehausen scheme [2] by constructing power expansion on
radius of the cylinder for the solution which describes stationary wave train past horizontally moving
body. We apply here analytical method developed by Ovsyannikov [3] for a class of initial boundary value
problems on unsteady free surface flows. By this way, the mathematical formulation reduces to an integral-
differential system of equations for the functions defining the free surface shape and the normal and tangential
components of fluid velocity. This method was extended by Makarenko [4] to the problem on unsteady water
waves forced by circular cylinder, as well as the problem on elliptic cylinder moving under free surface [5]
or under ice cover [6] was considered. Small-time solution expansions were obtained systematically starting
from the papers by Tyvand & Miloh [7, 8] devoted to the case of unsteady motion of a circular cylinder. We
revisit here this problem in order to accent the role of non-linearity in the mechanism of formation of finite
amplitude surface waves.

Statement of the problem

The plane irrotational flow of a heavy inviscid deep fluid is considered in the coordinate system Oxy with
a vertical y–axis. The circular cylinder of nondimensional radius r centered at (xcyl(t), ycyl(t)) moves totally
submerged in the deep fluid with free surface y = η(x, t), having the equillibrium level y = 0. Dimensionless
variables use the initial depth of submergence h as the length scale, characteristic speed of cylinder u0 as
the velocity scale, ρu2

0 as the pressure scale and h/u0 as the time scale. The Euler equations for the fluid
velocity u = (U, V ) and pressure p are

Ut + UUx + V Uy + px = 0,

Vt + UVx + V Vy + py = −λ,
Ux + Vy = 0, Uy − Vx = 0.

(1)

Here λ = gh/u2
0 is the square of the inverse Froude number. The fully non-linear kinematic and dynamic

free-surface boundary conditions
ηt + Uηx = V, p = 0, (y = η(x, t)), (2)

together with the exact rigid body surface condition

(u− ucyl) · n = 0, (x− xcyl(t))2 + (y − ycyl(t))2 = r2 (3)

are employed. Here n is the unit normal to the cross-section of the cylinder. We suppose that the fluid is at
rest at infinity (U, V → 0, η → 0, |x| → ∞) and initial velocity field satisfies compatibility conditions,
i.e. it is potential and irrotational.

We reduce equations (1)–(3) to an equivalent system of boundary integral-differential equations which
are one-dimensional with respect to spatial variables. Let u = U + ηxV and v = V − ηxU be tangential and
normal fluid velocitites at the free surface y = η(x, t). Excluding the pressure p from momentum equations
(1) we obtain under conditions (2) an evolution system for η, u, v

ηt = v, ut +
1

2

∂

∂x

(
u2 − 2ηxuv − v2

1 + η2
x

)
+ ληx = 0. (4)

Differential equations (4) are complemented by the integral equation which follows from the representation
of complex velocity F = U − iV using the boundary integrals on the free surface only

2πiF (z, t) =

∫
Γ

F (ζ, t)dζ

ζ − z
+

r2

(z − zcyl)2

∫
Γ

F (ζ, t)dζ

ζ − z∗
+

γ

z − zcyl
+

2πir2z′cyl
(z − zcyl)2

. (5)



Here z∗ = zcyl + r2/z is the inversion image of z = x + iy with respect to the circle centered at the point
zcyl(t) = xcyl(t)+ iycyl(t). The constant γ is the velocity circulation around the cylinder. Combining real and
imaginary parts of the formula (5) with z = x+ iη(x, t) taken on the free surface gives the real-valued form
of boundary integral equation as follows:

πv(x)+v.p.

∞∫
−∞

(Af (x, s)+r
2Ar(x, s))v(s)ds = v.p.

+∞∫
−∞

(Bf (x, s)+r
2Br(x, s))u(s)ds+vcurl(x)+vdip(x), (6)

where the kernels of integral operators are given by

Af + iBf =
i[1 + iη′(x)]

x− s+ i[η(x)− η(s)]
, Ar + iBr =

i[1− iη′(x)]
[x− iη(x)][r2 − (x− iη(x))(s− iη(s))]

.

The functions vcurl and vdip are the normal velocities induced at the free surface by vortex and dipole:

vcurl(x) = γRe
[
log(x+ iη(x)− zcyl(t))

]
x
, vdip(x) = Re

[
2iz′cyl(t)

x+ iη(x)− zcyl(t)

]
x

.

The time variable t was omitted in (6) because it appears in this integral equation only as a parameter. It
should be noted that the kernels Af and Bf correspond to the problem on free waves in deep water without
cylinder. The terms Ar and Br describe the interaction between the cylinder and free surface.

Small-time asymptotic solution

We consider the unsteady flow which starts from the rest and is caused by the motion of the circular cylinder
along the trajectory zcyl(t) = −i+ eiθt2. The angle θ of the motion direction relative to the horizon remains
constant. We look for a solution in the form of power series

η(x, t) = t2η2(x) + t3η4(x) + . . . , u(x, t) = t3u3(x) + t4u4(x) + . . . , v(x, t) = tv1(x) + t2v2(x) + . . .

It is easy to see that the coefficients ηn for n ≥ 1 and un for n ≥ 3 may be evaluated via vn by recursive
formulas following from equations (4)

ηn+1 =
1

n+ 1
vn, u3 =

1

6
(v2

1 − λv1)x, u4 =
1

4
(v1v2)x −

1

12
λv2x, u5 =

1

10
(2v1v3 + v2

2)x −
1

20
λv3x. (7)

Using the expansion of free surface elevation η one can determine the power series for integral operators

Af = t2A
(2)
f +t3A

(3)
f +. . . , Bf = B

(0)
f +t2B

(2)
f +. . . , Ar = A(0)

r +t2A(2)
r +t3A(3)

r +. . . , Br = B(0)
r +t2B(2)

r +. . .

The operators B(0)
f and A(0)

r are important for the solution construction. First of them is the Hilbert transform
H = B(0)

Hu(x) = v.p.

+∞∫
−∞

u(s)ds

x− s
, A(0)

r v(x) =
1

π

+∞∫
−∞

(1− r2p(x))q′(x) + (r2q(x)− s)p′(x)
(1− r2p(x))2 + (r2q(x)− s)2

v(s)ds

and the operator A(0)
r is nonlinear with respect to the Poisson kernels

p(x) =
1

1 + x2
, q(x) =

x

1 + x2
.

The integral equation (6) for the normal velocity v leads to a set of equations for coefficients vn (n ≥ 1)

πvn(x) + r2

+∞∫
−∞

A(0)
r (x, s)vn(s)ds = ϕn(x) (n = 1, 2, ...), (8)

where the functions ϕn can be evaluated via the coefficients v1, v2, . . . , vn−1 by the formulas

ϕ1 = v
(1)
dip, ϕ2 = 0, ϕ3 = v

(3)
dip +Hu3 + r2

(
B(0)
r u3 −A(2)

r v1

)
−A(2)

f v1.

Here v(n)
dip are the coefficients of small-time expansion for normal velocity vdip generated by dipole.



Thus nonlinearity realizes in two different ways if the solution expansion is constructed. Firstly, nonlinear
terms arise from the integral operators depending linearly on the coefficients un which are nonlinear with
respect to v1, v2, . . . , vn−1 due to the recursive formulas (7). In addition, nonlinearity is also presented by
the kernels of integral operators depending on the coefficients ηn. The Table 1 illustrates the leading order
terms of integral equation (8) collected by the powers of the time variable t and the cylinder radius r.

Table 1. Coefficients in the expansion of the functions ϕn from equations (8).

t2 t4 . . .

r2 v
(1)
dip v

(3)
dip, Hu3 . . .

r4 A
(0)
r v1 A

(0)
r v3, B

(0)
r u3, A

(2)
f v1 . . .

. . . . . . . . . . . .

Analytic solution of the equation (8) can be constructed explicitly by using the Neumann series of
integral operator A(0)

r . It is important here that the leading-order coefficient v1 results as linear combination
of the Poisson kernels p(x), q(x) and their derivatives p′(x), q′(x). Subsequently, calculation of higher order
coefficients vn involves nonlinear combinations of derivatives p(k)(x) and q(k)(x) with k = 1, . . . , n. This
version of multi-pole expansion procedure can be simplified essentially by using special identities such as
follows:

p′(x)q′(x) = − 1

12
p′′′(x), p′2(x) =

1

4
p(x) +

1

4
q′(x) +

1

12
q′′′(x), q′2(x) =

1

4
p(x) +

1

4
q′(x)− 1

12
q′′′(x), . . .

The main difficulty appears by evaluation of integral terms like A(2)
f v1 that can be rewritten as follows:

A
(2)
f v1(x) = v.p.

1

π

+∞∫
−∞

η2(x)− η2(s)

(x− s)2
v1(s)ds− η′2(x) v.p.

1

π

+∞∫
−∞

v1(s)ds

x− s
. (9)

As will readily be observed the first integral in the equation (9) is a commutator of the Hilbert transform H
with some differential operator. To be exact:

1

π

+∞∫
−∞

η2(x)− η2(s)

(x− s)2
v1(s)ds = η2Hv1x −H(η2v1)x.

Finally combining all the terms of integral equation (8) we obtain under recursive formulas (7) the power
expansion for the leading-order solution coefficients as follows:

η2(x) = 2
(
r2 − r4

) (
q′(x) sin θ − p′(x) cos θ

)
+O(r6), (10)

η4(x) = r2
(
p′′(x) cos 2θ − q′′(x) sin 2θ

)
+
λ(r2 − r4)

6

(
p′′(x) sin θ + q′′(x) cos θ

)
+

+
r4

9

(
p′′′′(x) cos 2θ − q′′′′(x) sin 2θ

)
+
r4

3

(
p′′(x)− q′(x)

)
+O(r6).

Calculations and visualization of the flow

Non-linear theory contribute to the analytical solution (10) by the terms of the order O(r4), so the correction
to linear theory becomes essential at the time scales when the cylinder approaches the free surface closely.
The Fig. 2 shows that constructed solution gives the correction not only in the elevation of the free surface
but also in its formation rate. In addition, asymptotic solution (10) allows one to calculate velocity field
in the whole fluid domain. Subsequent flow can be constructed effectively by the representation of complex
velocity (5), this solution has the form

F (z, t) = −2r2

(
eiθ

t

(z − i)2
+ 2e2iθ t3

(z − i)3

)
++2r2

(
eiθ

t

(z + i)2
+ 2e2iθ t3

(z + i)3

)
+

+ 2r4

(
eiθ

t

(z − i)2
+ 2e2iθ t3

(z − i)5

)
+
r4

2

(
e−iθ

t

(z + i)2
+ ie−2iθ t3

(z + i)2
+ 2

t3

(z + i)3

)
+O(r6). (11)
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Fig 1: The shape of free surface at t = 0.7 (r = 0.5, λ = 5)
predicted by the non-linear approximation (10) (solid line) and
by the linear approximation [4] (dashed line).

0.2 0.4 0.6 0.8 1.0
t

0.05

0.10

0.15

Η

Fig 2: Free surface elevation at x = 0

(r = 0.5, λ = 5) predicted by the non-
linear approximation (10) (solid line) and by
the linear approximation [4] (dashed line).

Fig 3: Velocity field around the
cylinder of radius r = 0.5 at the
time t = 0.7 (λ = 10) moving in
an infinite fluid (a) and downwards
under the free surface (b).
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From relation (11) we see that in the leading order as r → 0 the flow is determined by the two poles
located at the points z = ±i symetrically with respect to undisturbed free surface y = 0. The effect of
self-induced dipole that takes into account non-linear effects appears only when cylinder moves close to the
free surface.

In this paper the nonlinear problem of free surface flow in the presence of a submerged circular cylinder has
been studied analytically. The leading-order solution with the accuracy O(r4) was constucted in explicit form.
The effect of non-linearity was clarified for the case of circular cylinder moving with constant acceleration
from the rest.

Acknowledgement

This work was supported by the Russian Foundation for Basic Research (grant no. 15-01-03942).

References

[1] Tuck E.O. (1965) The effect of non-linearity at the free surface on flow past a submerged cylinder.
J. Fluid. Mech. Vol. 22, part 2, pp. 401-414.

[2] Wehausen J.V., Laitone E.V. (1960) Surface Waves. Handbuch der Physik. Vol. 9. Springer Verlag. Berlin.
pp. 446-778.

[3] Ovsyannikov L.V., Makarenko N.I., Nalimov V.I. et al. (1985) Nonlinear problems on theory of surface
and internal waves. Novosibirsk, «Nauka».

[4] Makarenko N.I. (2003) Nonlinear interaction of submerged cylinder with free surface. JOMAE
Transactions of the ASME. Vol.125. No 1, pp. 72-75.

[5] Makarenko N.I., Kostikov V.K. (2013) Unsteady motion of an elliptical cylinder under a free surface.
Journal of Applied Mechanics and Technical Physics. Vol. 53, No. 3, pp. 367-376.

[6] Kostikov V.K., Makarenko N.I., Korobkin A.A. (2012) Unsteady motion of elliptic cylinder under ice
cover. Proc. of 27th Int. Workshop on Water Waves and Floating Bodies. pp. 89–92.

[7] Tyvand P.A., Miloh T. (1995). Free surface flow due to impulsive motion of a small submerged circular
cylinder. J. Fluid Mech. Vol. 286, pp. 67-101.

[8] Tyvand P.A., Miloh T. (1995). free-surface flow generated by a small submerged circular cylinder starting
from the rest. J. Fluid Mech. Vol. 286, pp. 103-116.


