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1. INTRODUCTION

A thin elastic plate floating on an inviscid fluid
is an ideal model for the very large floating structure
in offshore engineering [1] and the homogeneous ice
sheet in the polar region [2]. A fundamental problem
for this model is the flexural response due to a moving
concentrated load [3–7], in which the Euler–Bernoulli
plate was commonly employed. Recently, the effect of
compression of the plate on the hydroelastic dynam-
ics were considered [8]. A general model the effect
of lateral stress is presented here for the elastic plate
floating on an infinitely deep fluid. A special case of
this model is capillary–gravity waves on an inertial
surface. The wave response and the wave resistance
are analytically investigated for steadily moving, sud-
denly starting and suddenly stopping concentrated
loads on the surface of the floating plate. For the pur-
pose of analytical study, two-dimensional problems
are considered.

2. GENERAL MATHEMATICAL
FORMULATION

We consider an inviscid, incompressible and ho-
mogeneous fluid of infinite depth, being covered by
a thin elastic plate of infinite extent. As a start-
ing point for the analytical study, a two-dimensional
problem is addressed here. The Cartesian coordinates
oxz are chosen in such a way that the z axis points
vertically upwards. The fluid occupies the domain
(−∞ < x < ∞, − ∞ < z 6 0) with z = 0 being
the undisturbed plate–fluid interface. Under the as-
sumption that the motion is irrotational, the velocity
potential ϕ(x, z, t) for the fluid satisfies the Laplace
equation ∇2ϕ = 0. For an infinitely deep fluid, we
have ∂ϕ/∂z = 0 as z → −∞.

Let ζ(x, t) represent the vertical plate deflection
subjected to a downward external load −Pext(x, t).
It is assumed that the wave amplitudes generated are
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small in comparison with the wavelengths. Thus the
linearized boundary conditions will be applied on the
plate–fluid interface (z = 0). The kinematic bound-
ary condition on z = 0 reads ∂ζ/∂t = ∂ϕ/∂z, which
implies that there is no cavitation between the plate
and the fluid and the fluid particles once on the inter-
face will always remain there. The dynamic boundary
condition on z = 0 reads

D∇4ζ +Q∇2ζ +M
∂2ζ

∂t2
= −ρ

(
∂ϕ

∂t
+ gζ

)
− Pext,

(1)

where the flexural rigidity of the plate D is deter-
mined by Young’s modulus E, Poisson’s ratio ν and
the plate thickness d as D = Ed3/12(1− ν2); Q is re-
lated to the lateral stress of the plate (with compres-
sion at Q > 0 and stretch at Q < 0) [8]; M = ρed; ρe
and ρ denote the densities of the plate and the fluid,
respectively; and g is the acceleration due to gravity.

Obviously, Eq. (1) indicates the balance among
the elastic, inertial, hydrodynamic forces and the
downward external load. Equation (1) is a general
linear model for a floating elastic plate. In partic-
ular, as D = 0 and Q = −T , Eq. (1) is for the
capillary–gravity waves on an inertial (M ̸= 0) or
a free (M = 0) surface, where T with T > 0 is the
coefficient of the surface tension.

To have a formal solution, we introduce the

Fourier transforms as {ϕ̃(α, z, t), ζ̃(α, t), P̃ext(α, t)} =∫∞
−∞{ϕ(x, z, t), ζ(x, t), Pext(x, t)} exp(−iαx)dx. Upon
some mathematical derivation, we obtain, for z = 0,

∂2ζ̃

∂t2
+ ω2ζ̂ = − P̂extk

ρ(1 + σk)
, (2)

where

ω2 =
gk(Γk4 − Λk2 + 1)

1 + σk
, (3)

Γ = D/ρg, Λ = Q/ρg, σ = M/ρ, (4)

and k = |α| is the wave number.
Equation (3) is the dispersion relation between

the frequency ω(k) and the wave number k for the
flexural–gravity wave motion on the elastic plate
floating on the inviscid fluid of infinite depth. Three
parameters, Γ, Λ and σ, are associated with the ef-
fects of flexural rigidity, lateral stress and the inertia
of the thin plate. For the capillary–gravity waves on



an inertial (σ ̸= 0) or a free (σ = 0) surface, the cor-
responding dispersion relation follows from Eq. (3) by
setting Γ = 0 and Λ = −τ , where τ = T/ρg > 0.

3. STEADILY TRANSLATING LOADS

Let ex be the unit vector along the positive x-
axis. We consider a concentrated load steadily mov-
ing with a constant velocity −Uex and a constant
magnitude of strength P0, namely Pext = P0δ(x−x0),
where δ(·) is the Dirac delta function and x0 = −Ut
is the source point namely the location of the con-
centrated load. In this case the right-hand side of
Eq. (2) reads −P0k exp(iαUt)/[ρ(1+σk)]. Neglecting
the transient effect, we have the particular solution of

Eq. (2) with Pext = P0δ(x− x0), denoted by ζ̃S(α, t),
for the ultimately steady-state plate deflection as fol-
lows

ζ̃(α, t) = ζ̃S(α, t) = − P0

ρ∆
exp(iαUt), (5)

where

∆(k) = k(1 + σk)(c2 − U2), (6)

and c(k) = ω/k is the phase speed.
By the inverse Fourier transform for Eq. (5),

the steady plate deflection, denoted by ζS, due to
a steadily translating load is given by

ζS(X,U) = − P0

2πρ

∫ ∞

−∞

exp(iαX)

∆
dα, (7)

where X = x − x0 = x + Ut. Taking X as a new
coordinate, one can see from Eq. (7) that the wave
is time-independent, which can be seen as a system
of steady waves in a reference frame steadily moving
with the load. It is noted that the denominator of the
integrand in Eq. (7) is an even function with respect
to α since k = |α|. To have an explicit expression for
the plate deflection, the Jordan lemma will be used.
The contribution to the integral comes from the pole
of the integrand, namely the roots of the equation

c2 − U2 = 0. (8)

One can find that there is a minimal phase speed
cmin for the flexural–gravity waves in the floating
plate with a given d. cmin is usually referred to as
the critical speed of the moving load. The critical
wave number kcr at which the minimal phase speed
occurs satisfies

dc

dk
=

1

k
(cg − c) = 0, (9)

where cg(k) = dω/dk is the group speed of the wave
generated. Equation (9) implies cg = c = cmin at
k = kcr. For k < kcr, cg < c while for k > kcr, cg > c.

The nature of the real roots of Eq. (8) depends
crucially on the relation between U and cmin. As U <

cmin, Eq. (8) has no real roots. As U = cmin, Eq. (8)
has one real root kcr. As U > cmin, Eq. (8) has two
real roots, denoted by k1 and k2 with k1 < kcr < k2.

As U < cmin, the plate deflection profile can be
numerically calculated by the fast Fourier transform
[4]. According to Schulkes and Sneyd [4], there is no
wave propagation. As U < cmin the deflection profile
is similar to a static one. As U > cmin, it is noted
that the poles of the integrand ±k1 and ±k2 lie on
the real α axis, which is due to the use of potential
theory for an inviscid fluid. For the viscous fluid, the
poles are automatically off from the axis since the
viscosity coefficient appears in the imaginary part,
as shown by Lu and Chwang [9]. To perform the α
integration for the wave motion in an inviscid fluid,
an artificial viscosity is necessary to move the poles
off the axis. According to Lighthill’s method [10],
the artificial viscosity, denoted by ϵ with ϵ > 0, can
be introduced as α = α0 − iϵ/(cg − U), where α0 =
±k1,±k2 is the original pole. For α0 = k1 < kcr,
we have cg < c = U . For α0 = k2 > kcr, we have
cg > c = U . Therefore, with the aid of the artificial
viscosity, ±k1 and ±k2 are moved into the upper and
lower half α-plane, respectively.

According to the Jordan lemma, infinite semi-
circles in the upper and lower half α-planes are chosen
for X > 0 and X < 0, respectively. Thus the wave
profile for U > cmin is given by

ζS(X,U) =

{
ζS1 , (X > 0),
ζS2 , (X < 0),

(10)

where ζSj = 2(−1)j+1P0 sin(kjX)H(U − cmin)/ρ∆
′
j ,

∆′
j = d∆(kj)/dk, and H(·) is the Heaviside step

function. k1 is the wave number of the long gravity-
dominated wave trailing the moving object (x0 < x),
while k2 is the wave number of the short elasticity-
dominated (capillarity-dominated) wave leading the
moving object (x < x0). This theoretical perdition
is in agreement with the experimental observatories
conducted by Squire et al. [5]

According to the formula of wave resistance
given by Kim and Webster [11], the wave resistance
R = RSex for a moving load can be given by

RS(U) =

∫ ∞

−∞
Pext

∂ζ

∂x
dx =

1

2π

∫ ∞

−∞
iαP̃ ∗

extζ̃dα, (11)

where P̃ ∗
ext(α, t) is the conjugate function of

P̃ext(α, t). It follows from Eq. (5) that the steady-
state wave resistance reads

RS(U) = − P 2
0

2πρ

∫ ∞

−∞

iα

∆
dα. (12)

By the residue theorem developed by Lighthill [10]
for the dispersive waves, the far-field wave resistance
for V > cmin can be analytically given by

RS(U) =
2P 2

0

ρ

2∑
j=1

kj
∆′

j

H(U − cmin). (13)



4. SUDDENLY STARTING LOADS

We assume that the concentrated load suddenly
starts from rest at t = 0 and then moves with a con-
stant velocity −Uex, then we have Pext = P0δ(x −
x0)H(t). The initial conditions for Eq. (2) read

ζ̃|t=0 = 0,
∂ζ̃

∂t
|t=0 = 0. (14)

The solution for Eq. (2) with Pext = P0δ(x− x0)H(t)
and (14) can readily be given by

ζ̃(α, t) = ζ̃S(α, t) + ζ̃T(α, t), (15)

where

ζ̃T(α, t) =
P0

ρ∆

[
cos(ωt) +

iαU

ω
sin(ωt)

]
, (16)

and ζ̃S(α, t) is given by Eq. (5). One can see that

ζ̃S(α, t) and ζ̃T(α, t) are the steady-state and tran-
sient responses due to a suddenly starting load, re-
spectively.

The analysis on ζ̂S(α, t) follows Section 3. Equa-
tion (16) can be rewritten as

ζ̃T(α, t) = A exp(iαUt)
∑
±

exp(∓iΩ±t)

Ω±
, (17)

where A(k) = P0/2ρ(1 + σk)c and Ω±(α) = ω ± αU.
The transient plate deflection, denoted by ζT, due to
a suddenly starting load is given by

ζT =
1

2π

∑
±

∫ ∞

−∞
A exp(iαX)

exp(∓iΩ±t)

Ω±
dα. (18)

Equation (18) with large t will be performed by means
of the method of stationary phase. Ω− with α > 0
and Ω+ with α < 0 have the same stationary points,
which make the main contribution to the integral for
ζT. Equation (18) can be rewritten as

ζT =
2∑

n=1

∫ ∞

0

A

Ω
exp

[
(−1)n+1i(kX +Ωt)

]
dk, (19)

where Ω(k) = ω − kU . The stationary point of Ω(k)
is determined by

dΩ

dk
= cg − U = 0. (20)

There exists a minimal group velocity cgmin. The
nature of the real roots of Eq. (20) depends crucially
on the relation between U and cgmin. Equation (20)
has no roots for U < cgmin, one real root (denoted by
κgm) for U = cgmin, and two real roots (denoted by
κ1 and κ2) for U > cg. Obviously, κ1 < κgm < κ2.

5. SUDDENLY STOPPING LOADS

We consider a concentrated load steadily moving
with a constant velocity −Uex and a constant mag-
nitude of strength P0 for t < 0. The load suddenly
stops at t = 0 and keeps at rest for t > 0. The gov-
erning equation is Eq. (2) with P̂ext = 0. The initial
values at t = 0 for the plate defection and the velocity
are taken as those for the steady-state solution. The
initial conditions are given by{
ζ̃|t=0,

∂ζ̃

∂t
|t=0

}
= − P0

ρ∆

{
1, iαU

}
. (21)

The corresponding solution reads ζ̃ = −ζ̃T(α, t),

where ζ̃T(α, t) is given in Eq. (16). It should be noted

that ζ̃ = −ζ̃T(α, t) is similar to the transient part due
to a suddenly starting load.

6. DISCUSSION

6.1. Flexural–gravity waves

In this Subsection, we consider the flexural–
gravity waves on an elastic surface with Γ > 0 and
Λ ̸= 0. The general case with σ ̸= 0 is discussed at
first. Then the special case with σ = 0 is of interest
since the inertial effect of the thin plate can be ne-
glected in comparison with the effects of the elastic
force and lateral stress of the plate and with the fluid
inertia. This assumption is justified since the wave-
length of the plate deflection is usually much large
than the plate thickness [3].

From the dispersion relation of the flexural–
gravity waves on an elastic surface, some remarkable
characteristics can be found due to the presence of lat-
eral stress (Λ ̸= 0). As Q = Qmax = 2

√
Dρg (namely

Λ = 2
√
Γ), we have cmin = 0 at k = kp0 = (ρg/D)1/4.

Therefore Q < Qmax is a necessary condition for the
wave propagation. Close examination on cg shows
that there exists a critical value of Q (denoted by
Qg0) at which cgmin = 0, and cg > 0 holds if and only
if Q < Qg0. As Qg0 < Q < Qc0, we have cg < 0 and
c > 0. As σ ̸= 0, the values of Qg0 and the wave num-
ber kg0 at which cg = 0 holds satisfy quintic equations
which can be solved numerically. As σ = 0, we have
the analytical expressions Qg0 = 2

√
5Dρg/3 (namely

Λ = 2
√
5Γ/3) and kg0 = (ρg/25D)1/4.

As σ ̸= 0, the solutions for kcr and κgm, which
satisfy respectively dc/dk = 0 and dcg/dk = 0, can
be obtained numerically. As σ = 0, exactly analytical
solutions for kcr and κgm can be given as

kcr =

(√
F +

√
12 + F

6
√
Γ

)1/2

, (22)

κgm =

(√
E1 −

√
D1 + 11

√
F

30
√
Γ

)1/2

, (23)



where F = Λ2/Γ, E1 = 363F − D1 − 90(10 + F ) +

8(900− 209F )
√
F/D1, D1 = 15C1 +121F − 30(10+

F ) + 15(80 − 24F + F 2)/C1, C1 = (8
√
B1 + 1600 −

272F − 36F 2 + F 3)1/3, and B1 = (4 − F )2(2000 +
600F−19F 2). Accordingly, the analytical expressions
for the minimal phase and group speeds are given by
cmin = c(kcr) and cgmin = cg(κgm), respectively.

As σ ̸= 0, we have, for the steady-state flexural–
gravity wave elevation and wave resistance,

∆′
j = g(4Γk3j − 2L2kj − L), (24)

where L2 = Λ + σL and L = U2/g. The exact solu-
tions for the wave numbers k1 and k2 of the steady-
state response can be given by

kj =

√
K2

2
+

(−1)j

2

√
−K2 +

2L√
K2Γ

+
2L2

Γ
, (25)

where K2 = [l2/2
1/3 + 21/3(12Γ + L2

2)/l2 + 2L2]/3Γ,

l2 = [L6 +
√
L2
6 − 4(12Γ + L2

2)
3]1/3, L6 = 27L2Γ +

72L2Γ − 2L3
2. As σ = 0, the solutions for ∆′

j and kj
can readily be obtained from Eqs. (24) and (25) by
setting σ = 0.

As σ ̸= 0 or σ = 0, the solutions for the wave
numbers κ1 and κ2 of the transient flexural–gravity
waves can be calculated numerically.

6.2. Capillary–gravity waves

Another special case with Γ = 0 and Λ = −τ <
0 corresponds to the capillary–gravity waves on an
inertial (σ ̸= 0) or a free (σ = 0) surface. There is
a maximal phase and group speeds for the capillary–
gravity waves on an inertial surface, namely

lim
k→+∞

c = lim
k→+∞

cg =
√
gτ/σ. (26)

The analytical solutions for kcr and κgm are

given as

kcr =
1√
τ
[
√
C +

√
C + 1], (27)

κgm =

√
D2

2
+

1

2

√
2D2 − 3C2 +

E2

4
√
D2

− σ

B2
, (28)

where E2 = 32σ(1/B2τ − 2σ2/B2 + 3)/B2
2 , D2 =

4(σ2/B2 − 1)/B2 + C2, C2 = 4(C + 1)2/3/B2, B2 =
τ(4C + 3), and C = σ2/τ .

For the the steady-state capillary–gravity wave
elevation and wave resistance, we have

∆′
j = g[2(τ − σL)kj − L], (29)

where kj = [L+ (−1)j
√
L2 − 4τ + 4σL]/2(τ − σL).

As σ ̸= 0, the solutions for the wave numbers κ1

and κ2 of the transient capillary–gravity waves can be
calculated numerically. For σ = 0, the exact solution
for κj is

κj =

√
C3

2
+

L

9τ
+

(−1)j

2

√
D3

4
√
C3

+
4L2

27τ2
− 4

3τ
− C3,

whereD3 = 4(L2−9τ)/27τ2, C3 = 4(34/3B2
3+L2B3−

9B3τ−35/3L2τ+38/3τ2)/81B3τ
2, and B3 = {9L2τ2+

Lτ [3τ(L4 + 18L2τ − 27τ2)]1/2 − 9τ3}1/3.

7. CONCLUSIONS

Analytical solutions are explicitly derived for the
wave response and the wave resistance due to steadily
moving, suddenly starting and suddenly stopping
concentrated loads on the surface of the floating plate,
taking the effects of lateral stress into consideration.
It is found that there is a critical value for the com-
pression effect, at which the phase speed of flexural–
gravity waves is zero.
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