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Highlights:

• Foldy-type methods are developed to study the title
problem with equally spaced cylinders around a ring.

• Explicit solutions are obtained by exploiting the cir-
culant structure implied by the special geometry.

1. Introduction

It is 25 years since the publication of “Linton & Evans”
[1] on “The interaction of waves with arrays of vertical
circular cylinders”; it is their most cited joint work.
The paper describes an exact method in which sep-
aration of variables and addition theorems are com-
bined, leading to an infinite system of linear algebraic
equations. The method itself is much older, and goes
back to a paper by Závǐska from 1913. It has been
used in many contexts, and extended in many direc-
tions; for discussion and many references, see [2, Chap-
ter 4]. Apart from using the basic method for water-
wave problems, Linton & Evans [1] also showed that
the computation of the pressure near, or on, any one
cylinder could be simplified considerably.

In this paper, we are interested in the scattering of
an incident plane wave by N identical vertical circular
cylinders arranged in a particular way: in a horizontal
plane (plan view), there are N circles (radius a) with
their centres located on, and equally spaced around, a
larger circle (radius b). We call this geometrical con-
figuration a ring or a cage.

Of course, the Linton–Evans method can be, and
has been, applied to scattering by a ring of cylinders.
See, for example, [3, 4, 5]. However, we are especially
interested when N is large, so that we have many small
circles around the ring with small gaps between them.

Intuitively, we expect that, in the limit (when there
are no gaps), we should approach the solution for scat-
tering by a single large cylinder (with cross-section of
radius b). Can this be shown, and, if so, how fast is
the limit achieved?

The problem we have described is reminiscent of
a problem in electrostatics, a Faraday cage. Thus, a
metal enclosure protects its inhabitants from external
electrical discharges, as first demonstrated by Michael
Faraday in 1836. If the metal has small holes or gaps,
protection is no longer perfect.

In a recent paper [6], we gave an analysis of such
problems, for both electrostatics (Laplace’s equation)

and acoustics (Helmholtz equation); the latter is of
most relevance here. The cylinders comprising the
wires in the cage were assumed to be small, both ge-
ometrically (a � b) and acoustically (ka � 1, where
2π/k is the incident wavelength). For the scattering
itself, we used a much simplified version of Linton–
Evans, one in which the scattering by each circular
cylinder is represented by a single term (proportional
to H0(kr), see below) instead of the usual infinite
separation-of-variables series. This leads to Foldy’s
method [7], [2, §8.3], which takes account of all the mul-
tiple scattering effects. The result is an N ×N linear
algebraic system. This reduction works for N scatter-
ers at more-or-less arbitrary locations. However, for
a ring of equally-spaced identical scatterers, the ma-
trix occurring has a special structure: it is a circulant
matrix. This means that it can be inverted explicitly,
using a discrete Fourier transform, and then the be-
haviour of the solution as N grows can be analysed. It
turns out that the expected limit is achieved but the
limit is approached slowly, at best as N−1.

So far, we have not mentioned the boundary con-
dition on each cylinder. The exact Linton–Evans ap-
proach can accommodate any choice, such as a Dirich-
let condition (pressure or potential specified, “sound-
soft” in acoustics) or a Neumann condition (normal
velocity specified, “sound-hard” in acoustics). In the
context of water waves, the usual case is the Neumann
condition, as imposed in [1].

For the simplified Foldy-type analysis described
above, the underlying assumption is that each cylin-
der scatters isotropically : note the presence of H0(kr)
with no dependence on the polar angle. This is entirely
appropriate for Dirichlet problems because we know
that small (ka � 1) sound-soft circles really do scat-
ter like a monopole. On the other hand, sound-hard
circles do not scatter isotropically: both monopole and
dipole contributions are equally important and must
be retained. The dipole gives a directional dependence
to the waves scattered by one circle, and this must be
incorporated into the calculation of the multiply scat-
tered waves when there are N circles.

2. Basic formulation

A plane wave is incident upon N vertical cylinders in
water of depthH. As usual, we factor out the depth de-
pendence and write the velocity potential for the scat-



tered waves as Re {u(x, y) cosh k(H − z) e−iωt}, where
z = 0 is the free surface, z = H is the flat bottom
and k is the positive real solution of ω2 = gk tanh kH.
Denote the cross-section of the jth cylinder in the
xy-plane by Cj ; it is centred at rj . Then u satisfies
(∇2 + k2)u = 0 outside all the Cj , a radiation condi-
tion, and a boundary condition on each Cj .

3. Basic Foldy approach

Foldy’s method starts by assuming isotropic scattering.
This means that, near Cj , the scattered field at r is
approximated by

AjG(r − rj),

where Aj is an unknown amplitude, G(r) = H0(k|r|) is

the free-space Green’s function and Hn(w) ≡ H
(1)
n (w)

is a Hankel function. The total field is represented as

u(r) = uinc(r) +

N∑
j=1

AjG(r − rj), (1)

where we will take uinc(r) = uinc(x, y) = eikx.
The field incident on Cn in the presence of all the

other scatterers is

un(r) ≡ u(r)−AnG(r − rn)

= uinc(r) +

N∑
j=1
j 6=n

AjG(r − rj). (2)

This “incident” field is scattered by Cn. We character-
ize this process by

An = g0un(rn), g0 = −J0(ka)/H0(ka), (3)

where Jn is a Bessel function and each Cj has radius
a. This makes the strength of the scattered wave from
Cn, An, proportional to the field acting on it, un(rn).

Finally, evaluating (2) at rn gives, after using (3),

1

g0
An = uinc(rn) +

N∑
j=1
j 6=n

Aj G(rn − rj), (4)

for n = 1, 2, . . . , N . This is a linear N ×N system for
Aj . Then the total field is given by (1).

4. Application to a ring of soft cylinders

Here, we summarise the results from [6]. There are
N small sound-soft circles arranged so that their cen-
tres (at rj) are equally spaced around a larger circle of
radius b, centred at the origin. Let h = 2π/N be the
angular spacing between adjacent scatterers. Then, us-
ing plane polar coordinates, r and θ, rj is at r = b,

θ = θj = jh. The distance between the jth and nth
scatterers is

|rn − rj | = 2b | sin ([n− j]π/N)| . (5)

Then the N ×N Foldy system (4) simplifies to

N∑
j=1

Kn−jAj = fn, n = 1, 2, . . . , N, (6)

where fn = −uinc(rn), K0 = −g−10 ,

Kj = H0(2kb | sin (jπ/N)|), j 6= 0 mod N (7)

and Kj is N -periodic: Kj+mN = Kj , m = ±1,±2, . . ..
Richmond [8] and Wilson [9] gave numerical solu-

tions of (6). Much later, Vescovo [10] noticed that
the system matrix in (6) is a circulant matrix, which
means that (6) can be solved explicitly using the dis-
crete Fourier transform. Thus, let $ = e2πi/N . Multi-
ply (6) by $mn, sum over n and use the N -periodicity
of Kn. This gives

Ãm = f̃m/K̃m, (8)

where

Ãm =

N∑
j=1

Aj$
mj , An =

1

N

N∑
j=1

Ãj$
−nj , (9)

f̃m =

N∑
j=1

fj$
mj , K̃m =

N∑
j=1

Kj$
mj . (10)

Finally, invert the discrete Fourier transform of {Aj},
{Ãm}, using the second of (9).

Having determined An, we can calculate the field
everywhere, using (1). In addition, we can investigate
analytically what happens as N grows.

Thus, for uinc = eikx, we obtain

f̃m = −
N∑
j=1

eikb cos jh eimjh.

Write this formula (suggestively) as

f̃m
N

= h

N∑
j=1

f(jh) with f(θ) = − 1

2π
eikb cos θeimθ.

We recognise the sum. It is what we would have ob-
tained if we had used the repeated trapezium rule to

compute
∫ 2π

0
f(θ) dθ, noting that f is 2π-periodic. As

f is also very smooth, we know that the convergence is
exponentially fast. Hence, evaluating the integral gives

N−1f̃m ∼ −imJm(kb) as N →∞. (11)

This rapid convergence is encouraging, but the be-
haviour of K̃m is quite different. From (7) and (10),

K̃m = − 1

g0
+

N−1∑
j=1

v(jh), (12)



where v(θ) = eimθH0(2kb | sin (θ/2)|) is 2π-periodic but
has logarithmic singularities at θ = 0 and θ = 2π. The
sum in (12) looks like the trapezoidal rule in which
the endpoint contributions have been “ignored”; the
properties of such sums have been analysed by Sidi
[11]. Using his results, we find that

1

N
K̃m ∼ −

1

Ng0
+

1

2π

∫ 2π

0

v(θ) dθ +
2i

πN
logN (13)

as N →∞. The integral can be evaluated. Eventually,
after combining with (8) and (11), we find that

Ãn = −in/Hn(kb)+O(N−1 logN) as N →∞. (14)

The leading approximation can be used to confirm
our expectations. For example, the far-field pattern
of the ring approaches that for scattering by a sound-
soft circle of radius b [2, eqn (4.10)], but this limit is
approached rather slowly.

As N increases, the gap between adjacent scatterers,
bh − 2a, shrinks. To keep the gap positive, we may
suppose that a also shrinks, a = αbh/2 = αbπ/N , for
some constant α, 0 < α < 1. Then it turns out that
using the leading approximation to g0 (see (3)) in (13)
exactly cancels the logN term in (13), thus reducing
the asymptotic error to O(N−1).

4. Extended Foldy approach

Rigid (sound-hard) scatterers always induce a dipole
field. Foldy’s method can be generalized to cover these
situations [2, §8.3.3]. Thus, suppose that, near the jth
scatterer, the scattered field is given by

AjG(r − rj) + qj · g(r − rj), (15)

where Aj is an amplitude, qj is a vector,

g(r) = −1

k
gradG(r) = − r̂

k

d

dr
G(r) = r̂H1(kr),

with r̂ = r/r and r = |r|. Each component of g is an
outgoing solution of the Helmholtz equation.

The first term in (15) is a source at rj ; the strength
of the source (given by Aj) is unknown. The second
term is a dipole at rj ; the direction and strength of
the dipole (given by qj) are unknown. The basic Foldy
method assumes that qj ≡ 0. We remark that the
approximation (15) was used successfully in [12, Ap-
pendix A] for scattering by an infinite grating of sound-
hard circular cylinders.

For more detail, define polar coordinates Rj and Θj

at rj , r = rj + Rj (̂ı cos Θj + ̂ sin Θj), where ı̂ and ̂
are unit vectors in the x and y directions, respectively.
Then (15) becomes

AjH0(kRj) + {(qj · ı̂) cos Θj + (qj · ̂) sin Θj}H1(kRj).

Next, we represent the total field as

u(r) = uinc(r)+

N∑
j=1

{AjG(r−rj)+qj ·g(r−rj)}. (16)

The field incident on Cn in the presence of all the
other scatterers is

un(r) ≡ u(r)−AnG(r − rn)− qn · g(r − rn) (17)

= uinc(r) +

N∑
j=1
j 6=n

{AjG(r − rj) + qj · g(r − rj)}.

This “incident” field is scattered by Cn. We character-
ize this process by

An = g un(rn) and qn = Qvn(rn),

where

vn(r) = k−1gradun. (18)

The quantity g is a scalar whereas Q is a 2× 2 matrix.
Thus, An is proportional to the value of the exciting
field at rn, whereas qn is related to the gradient of the
exciting field at rn.

Good choices for g and Q are

g = −Z0, Q = −2Z1I, Zn = J ′n(ka)/H ′n(ka), (19)

where I is the 2× 2 identity matrix.

Evaluating (17) at rn gives

1

g
An = uinc(rn)+

N∑
j=1
j 6=n

{AjG(Rnj)+qj ·g(Rnj)}, (20)

where Rnj = rn − rj . Also, from (17) and (18),

vn(r) = vinc(r) (21)

+

N∑
j=1
j 6=n

{−Aj g(r − rj) + k−1grad [qj · g(r − rj)]},

where vinc(r) = k−1graduinc. Direct calculation gives

(kRnj)
−1H1(kRnj) qj − R̂nj(qj · R̂nj)H2(kRnj)

for k−1grad [qj · g(r − rj)] at r = rn, where Rnj =

|Rnj | and R̂nj = Rnj/Rnj . Hence, evaluating (21)
at rn, we obtain

Q−1qn = vinc(rn) +

N∑
j=1
j 6=n

{
H1(kRnj)

kRnj
qj

− R̂nj(qj · R̂nj)H2(kRnj)−Ajg(Rnj)

}
. (22)

Equations (20) and (22) hold for n = 1, 2, . . . , N . They
give a system of linear algebraic equations for An and
the two components of qn. For N scatterers, there are
3N equations for the 3N scalar unknowns.



5. Application to a ring of hard cylinders

We define the geometry as in §3. It is convenient to
write qj in terms of its radial and tangential compo-

nents with respect to the ring. Let θ̂j = ̂ cos θj−̂ı sin θj
be a unit tangent vector, so that r̂j · θ̂j = 0. Write

qj = Bj r̂j + Cj θ̂j ,

so that the 3N unknowns are Aj , Bj and Cj , j =
1, 2, . . . , N . We have

b−1qj ·Rnj = (Bj r̂j + Cj θ̂j) · (r̂n − r̂j)
= −(2b2)−1R2

njBj + Cj sin θnj ,

where we have used (5) and we have defined

θnj = θn − θj = (n− j)h.

Hence

qj · R̂nj = −(2b)−1RnjBj + bR−1nj Cj sin θnj .

This will be used in (20) and (22). We will also form

the inner product of (22) with r̂n and with −θ̂n. Thus,
we require

r̂n · qj = Bj cos θnj + Cj sin θnj ,

θ̂n · qj = −Bj sin θnj + Cj cos θnj ,

r̂n · R̂nj = (2b)−1Rnj ,

θ̂n · R̂nj = bR−1nj sin θnj .

Assembling all the pieces, we obtain the system

N∑
j=1

Kn−jxj = fn, n = 1, 2, . . . , N, (23)

where xj = (Aj , Bj , Cj)
T ,

fn = (−uinc(rn), −r̂n · vinc(rn), θ̂n · vinc(rn))T

and Kj is a symmetric 3× 3 matrix. In detail,

K0 = KN =

 Z−10 0 0
0 (2Z1)−1 0
0 0 −(2Z1)−1

 ,

using (19), and, for j 6= 0 mod N ,

Kj =

 K11 K12 K13

K12 K22 K23

K13 K23 K33

 ,

with entries as follows:

K11 = H0, K12 = −(2b)−1RjH1,

K13 = bR−1j H1 sin θj ,

K22 =
H1

kRj
cos θj +H2

R2
j

4b2
,

K23 =
H1

kRj
sin θj −

1

2
H2 sin θj ,

K33 = − H1

kRj
cos θj +H2

b2

R2
j

sin2 θj .

All the Hankel functions have argument kRj with
Rj = 2b| sin (jπ/N)|. Evidently, Kj is N -periodic:
Kj+mN = Kj , m = ±1,±2, . . ..

The system (23) gives 3N equations for 3N un-
knowns. Application of the discrete Fourier transform
breaks the system into N 3×3 systems, one for each xj .
Of course, each 3× 3 system can be solved explicitly.

6. Discussion

This is a work in progress. To date, we have calculated
all the discrete Fourier transforms, and we have found
asymptotic estimates as N →∞. This is more difficult
than for soft circles because the integrals encountered
with some of the Kij have stronger singularities.
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