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Highlights:

• The diagonal coefficients in the added mass matrix, for a single two-dimensional structure which
satisfies the John condition in water of infinite depth, are proven to be non-negative.

• The heave added mass coefficient for a symmetric pair of structures, which individually satisfy
the John condition but move as a single structure, is shown to be non-negative in the range
(2n − 1)π ≤ Ks ≤ 2nπ. The corresponding sway coefficient is shown to be non-negative when
2nπ ≤ Ks ≤ (2n + 1)π. Here n is an integer, K is the infinite-depth wave number and s is the
length of the free surface between the structures.

1 Introduction

A structure is forced to make small oscillations in water of infinite depth in a single mode of motion.
The coefficient of proportionality in the part of the complex-valued hydrodynamic force on the structure
that is proportional to minus its acceleration, is a diagonal term in the added mass matrix. Numerical
calculations show that this coefficient is positive at all frequencies for many structures. However, if the
structure is shallowly-submerged, it may be negative in some frequency ranges [1, 2]. Negative added
mass also occurs when one or more elements of the structure enclose a portion of the free surface, for
example a pair of surface-piercing cylinders in two dimensions [3, 4, 5].

Falnes [6] showed that the diagonal coefficients in the added mass matrix are proportional to the
difference in the time averaged kinetic and potential energies of the relevant fluid motion. A similar
argument to that employed in [7] is used here to show that the potential energy is less than or equal to
the kinetic energy for a single two-dimensional structure which satisfies the John condition and oscillates
in a single mode of motion. So the diagonal coefficients in the added mass matrix are non-negative for
such a structure at all frequencies. The work is extended to find frequency ranges in which the added mass
coefficients for a symmetric pair of such structures are non-negative, using the method in [8]. The ranges
for non-negative symmetric and antisymmetric added mass coefficients are shown to be complementary.
Numerical calculations for two semi-circular cylinders show that the frequencies at which negative added
mass occurs are consistent with these results.

2 Formulation
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Figure 1: A single structure which satisfies the John condition



A two-dimensional, surface-piercing structure makes small amplitude oscillations at angular frequency ω,
in water of infinite depth. In its equilibrium position, the structure is assumed to intersect the mean free
surface at two points only (±a, 0), as illustrated in Figure 1, and to be such that a vertical line drawn
down through the fluid from each point on the mean free surface does not intersect the structure. John [9]
showed that the linear, unforced frequency domain potential for such a body is zero and so the structure
is said to satisfy the John condition.

If the component of the velocity of the structure in the pth mode of motion is given by Re[vpe
−iωt]

then the corresponding velocity potential is Re[vpφp(x, z)e
−iωt], where φp is harmonic and satisfies

∂φp
∂n

= np on the structure, (1)

where np is the pth component of the unit inward normal. The linearised free surface condition is

Kφp −
∂φp
∂z

= 0 on z = 0, x < −a, x > a, K = ω2/g. (2)

There is no motion at large depths and only outward propagating waves as x→ ±∞.

3 The sign of the added mass coefficient for a single structure

An application of the divergence theorem to φp∇φp + φp∇φp in the fluid yields the relationship between
the non-dimensional diagonal coefficient in the added mass matrix µpp and the difference between the
time-averaged kinetic and potential energies derived in [6], namely

µpp = Re

[
1

A0

∫
B
φp np dS

]
=

1

A0
lim

M→∞

[∫
D−∪D+∪DB

|∇φp|2 dV −K
∫
F−∪F+

|φp|2 dx

]
, (3)

where A0 is the cross-sectional area of the structure. Green’s theorem is applied to φp and eiK(x−s)+Kz

in the region x ≥ s > a. Both functions represent outgoing waves at infinity and so the only contribution
comes from the line x = s and yields∫ 0

−∞

[
∂φp
∂x

eKz − iKφpe
Kz

]
x=s

dz = 0. (4)

The second term in (4) is integrated by parts and then the equation is rearranged to give

φp(s, 0) =

∫ 0

−∞

[
∂φp
∂z
− i

∂φp
∂x

]
x=s

eKz dz. (5)

Now ∣∣∣∣∂φp∂z
− i

∂φp
∂x

∣∣∣∣2 = 2

(∣∣∣∣∂φp∂z

∣∣∣∣2 +

∣∣∣∣∂φp∂x

∣∣∣∣2
)
−
∣∣∣∣∂φp∂z

+ i
∂φp
∂x

∣∣∣∣2 ≤ 2 |∇φp|2 , (6)

so an application of the Cauchy-Schwarz inequality to (5) and then integration over F+ yields

K

∫
F+

|φp(x, 0)|2 dx ≤
∫
D+

|∇φp|2 dV. (7)

A similar analysis in x < −a produces the same inequality but with F+ and D+ replaced by F− and D−.
Both inequalities are substituted into (3) to give

µpp = Re

[
1

A0

∫
B
φp np dS

]
≥ 1

A0

∫
DB

|∇φp|2 dV ≥ 0. (8)

Thus the diagonal terms in the added mass matrix are non-negative for a single structure which satisfies
the John condition.



4 The sign of the added mass coefficient for two structures
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Figure 2: Two structures which individually satisfy the John condition

The analysis used in §3 is performed for two structures which individually satisfy the John condition but
move as a single structure and yields

µpp = Re

[
1

A0

∫
B
φp np dS

]
≥ 1

A0

[∫
Di

|∇φp|2 dV −K
∫
Fi

|φp|2 dx

]
, (9)

where Fi represents the free surface between the structures and Di the fluid region below. It remains to
determine where the right-hand side of (9) is non-negative. On Fi the function wp is defined as in [8] by

wp(x) =

∫ 0

−∞
φp(x, z)e

Kz dz. (10)

The operator d2/dx2 is applied to (10) and yields d2wp/dx
2 + K2wp = 0. If the system of structures is

symmetric, the heave potential φ3 is symmetric in x, and so

w3(x) = B3 cosKx =

∫ 0

−∞
φ3(x, z)e

Kz dz, x ∈ Fi, (11)

where B3 is a complex constant. Integration by parts in (11) followed by applications of the Cauchy and
Schwarz inequalities yields an inequality which is integrated over Fi to give

K

∫
Fi

|φ3(x, 0)|2 dx ≤ K2|B3|2 [2K(b− a) + sin 2K(b− a)] +

∫
Di

∣∣∣∣∂φ3∂z

∣∣∣∣2 dV. (12)

Differentiation of (11) with respect to x and an application of the Cauchy-Schwarz inequality followed by
integration over Fi yields

K2|B3|2 [2K(b− a)− sin 2K(b− a)] ≤
∫
Di

∣∣∣∣∂φ3∂x

∣∣∣∣2 dV. (13)

A combination of (12) and (13) gives

K

∫
Fi

|φ3(x, 0)|2 dx ≤ 2K2|B3|2 sin 2K(b− a) +

∫
Di

|∇φ3|2 dV ≤
∫
Di

|∇φ3|2 dV (14)

if sin 2K(b− a) ≤ 0, that is if (2n− 1)π ≤ 2K(b− a) ≤ 2nπ, where n is a positive integer. Substitution
of (14) into (9) shows that the heave added mass is non-negative in this range. The sway potential φ1 is
antisymmetric in x and so w1(x) = B1 sinKx and a similar analysis gives

K

∫
Fi

|φ1(x, 0)|2 dx ≤ −2K2|B1|2 sin 2K(b− a) +

∫
Di

|∇φ1|2 dV ≤
∫
Di

|∇φ1|2 dV (15)

if sin 2K(b−a) ≥ 0, that is if 2nπ ≤ 2K(b−a) ≤ (2n+1)π, where n is a non-negative integer. Substitution
of (15) into (9) shows that the sway added mass is non-negative in this range.



Numerical calculations of the heave and sway added mass coefficients, µ33 and µ11, are presented in
Figure 3 for a pair of surface-piercing, semi-circular cylinders for which b = 2a. The shaded area represents
the frequency ranges in which µ11 must be non-negative and the complementary frequency ranges are
where µ33 must be non-negative. It should be noted that µ11 and µ33 are not negative everywhere outside
these intervals and work is currently in progress to use the wide-spacing approximation to find ranges of
frequencies at which negative values of µ11 and µ33 occur.
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Figure 3: The heave −−−−− and sway −−− added mass for 2 semi-circular cylinders, b = 2a
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