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I. Introduction
So-called Tuned Liquid Dampers (TLDs) are gaining interest as devices to mitigate the resonant response of
slender buildings under wind or earthquake excitation. Some TLDs are of sloshing type, consisting in tanks
partly filled with water, with the natural frequency of their first sloshing mode adjusted to the resonant frequency
of the structure. Energy dissipation is enhanced by perforated screens. The two-dimensional case of rectangular
TLDs has been extensively investigated numerically and experimentally — e.g. see Warnitchai & Pinkaew
(1998), Tait (2008), Faltinsen et al. (2011), Crowley & Porter (2012) or Molin & Remy (2013).

Figure 1: Considered geometries: circular screen (left) or along a diameter (right).

In the case of axisymmetric buildings such as airport or wind towers TLDs should preferably be axisymmetric
as well. Ghaemmaghami et al. (2012) have proposed an annular TLD with two horizontal solid baffles at the
outer wall. Here we consider cylindrical tanks with vertical perforated screens, either radial or circular, or a
combination of both. There are two basic cases: one circular screen or one screen along a diameter, perpen-
dicular to the direction of forced motion (Fig. 1). We have investigated both cases through numerical and
experimental modelling.

II. Numerical models
The theoretical frame closely follows Molin & Remy (2013): potential flow theory is assumed with the free
surface equations linearized. With the velocity potential written as

Φ(R, θ, z, t) = Aωℜ
{
φ(R, θ, z) e−iωt

}
(1)

where (R, θ, z) are cylindrical coordinates from the bottom of the tank, A is the surge motion amplitude and ω
the frequency, the boundary value problem writes

∆φ = 0 0 ≤ R ≤ b 0 ≤ z ≤ h (2)

g φz − ω2 φ = 0 z = h (3)

φz = 0 z = 0 (4)

φR = cos θ R = b (5)

(b the radius of the tank and h the filling height of water).
At the porous screen a quadratic discharge law is assumed (Molin, 2011):

P− − P+ = ρ
1− τ

2µ τ2
Vr |Vr|, (6)

with P− −P+ the pressure drop, τ the porosity or open-area ratio, µ a discharge coefficient, and Vr the relative
velocity of the flow with respect to the screen.



II.1 Circular screen
The velocity potential is written as

φ1 = cos θ

{
φNS +B0

J1(k0R)

k0 J ′
1(k0a)

cosh k0z

cosh k0h
+

∞∑
n=1

Bn
I1(knR)

kn I ′1(kna)
cos knz

}
(7)

in the inner sub-domain (0 ≤ R ≤ a), and

φ2 = cos θ

{
φNS +B0

Y ′
1(k0b) J1(k0R)− J ′

1(k0b) Y1(k0R)

k0 (Y ′
1(k0b) J

′
1(k0a)− J ′

1(k0b) Y
′
1(k0a))

cosh k0z

cosh k0h

+

∞∑
n=1

Bn
I ′1(knb) K1(knR)−K ′

1(knb) I1(knR)

kn (I ′1(knb) K
′
1(kna)−K ′

1(knb) I
′
1(kna))

cos knz

}
(8)

in the annular sub-domain (a ≤ R ≤ b). In these equations k0, kn are the roots of the dispersion equation
ω2 = g k0 tanh k0h = −g kn tan knh and φNS stands for the solution in the absence of screen:

φNS = A0
J1(k0R)

k0 J ′
1(k0b)

cosh k0z

cosh k0h
+

∞∑
n=1

An
I1(knR)

kn I ′1(knb)
cos knz (9)

with A0 = 2 sinh 2k0h/(2 k0h+ sinh 2k0h), An = 4 sin knh/(2 knh+ sin 2 knh).
Only the discharge equation (6) remains to be verified. The relative flow velocity at the screen is

Vr(z, θ, t) = Aω cos θℜ

{[
(α0 +B0)

cosh k0z

cosh k0h
+
∑
n

(αn +Bn) cos knz

]
e−iωt

}
(10)

with α0 = A0 (J
′
1(k0a)/J

′
1(k0b)− 1), αn = An (I

′
1(kna)/I

′
1(knb)− 1), while the pressure drop is

P1 − P2 = Aρω2 cos θℜ

{
i

[
β0 B0

cosh k0z

cosh k0h
+
∑
n

βn Bn cos knz

]
e−iωt

}
(11)

and the βi coefficients have complicated expressions not reproduced here.
The following derivations closely follow Molin & Remy (2013) with Lorentz linearization being applied both

to the time and angular coordinate dependencies:

ℜ
{
f e−iωt

} ∣∣ℜ{
f e−iωt

}∣∣ ≃ 8

3π
∥f∥ ℜ

{
f e−iωt

}
cos θ | cos θ| ≃ 8

3π
cos θ

II.1 Screen along a diameter
In the case of a solid wall, Bauer (1963) has proposed a solution written as the solid motion plus a combination

of natural modes, that is eigen-functions satisfying an homogeneous Neumann condition at the vertical walls.
In the case of a porous wall it turns out to be more handy to use eigen-functions satisfying the linearized free
surface condition, alike in the circular case.

That is, in the sub-domains 1⃝ and 2⃝ of Fig. 1 the velocity potential φi is written as

φ1,2 =
∞∑

m=0

cos 2mθ

{
±Am0

J2m(k0R)

k0 J ′
2m(k0b)

cosh k0z

cosh k0h
±

∞∑
n=1

Amn
I2m(knR)

kn I ′2m(knb)
cos knz

}

+
∞∑

m=0

cos(2m+ 1)θ

{
Bm0

J2m+1(k0R)

k0 J ′
2m+1(k0b)

cosh k0z

cosh k0h
+

∞∑
n=1

Bmn
I2m+1(knR)

kn I ′2m+1(knb)
cos knz

}
(12)

In this equation ± means + in sub-domain 1⃝ and − in sub-domain 2⃝. When the screen is solid the Bmn

coefficients are zero identically. When there is no screen the Amn and Bmn coefficients are zero except for the
B0n which are identical with the An in (9).

There remains to verify the no flow condition at the outer wall and the discharge equation at the porous
screen. From the development

cos(2m+ 1)θ = ±αm0 ±
∞∑

n=1

αmn cos 2nθ 0 ≤ θ ≤ π (13)



where, again, ± means + in subdomain 1⃝ and − in subdomain 2⃝, and

αm0 =
2

π

(−1)m

2m+ 1
αmn =

4

π

(−1)m+n (2m+ 1)

(2m+ 1)2 − 4n2
(14)

the no-flow condition at the outer wall results in

Amn +
∞∑
p=0

αpm Bpn = α0m B0nNS m,n = 0,∞ (15)

where B0nNS is the No Screen case solution (9). Equivalently, in vector form:

−→
A = AB · −→B +

−→
RA (16)

where
−→
A = (A01, A02, . . . , A0N , A11, . . . , AMN ),

−→
B = (B01, B02, . . . , B0N , B11, . . . , BMN ) and M , N are the

truncation orders of the m and n series. There remains to verify the discharge equation at the screen which
takes the form

∞∑
m=0

(−1)m

{
Am0

J2m(k0R)

k0 J ′
2m(k0b)

cosh k0z

cosh k0h
+

∞∑
n=1

Amn
I2m(knR)

kn I ′2m(knb)
cos knz

}

= i F (R, z)

[ ∞∑
m=0

(2m+1) (−1)m

{
Bm0

J2m+1(k0R)

k0 J ′
2m+1(k0b)

cosh k0z

cosh k0h
+

∞∑
n=1

Bmn
I2m+1(knR)

kn I ′2m+1(knb)
cos knz

}
−R

]
(17)

with

F (R, z) =
2

3π

1− τ

µτ2

A

R2
×

∥∥∥∥∥∥
∞∑

m=0

(2m+1) (−1)m

Bm0
J2m+1(k0R)

k0 J ′
2m+1(k0b)

cosh k0z

cosh k0h
+

∞∑
n=1

Bmn
I2m+1(knR)

kn I ′2m+1(knb)
cos knz

−R

∥∥∥∥∥∥
Alike in the two-dimensional case an iterative procedure is devised where F (R, z) is given from the previous two
steps. Both sides of equation (17) are first multiplied by cosh k0z/ cosh k0h (then cos knz) and integrated in z
from 0 to h. Then they are multiplied by J2p(k0R)/(k0 J

′
2p(k0b)) (then I2p(knR)/ (kn I

′
2p(knb))) and integrated

in R from 0 to b. In this way one gets the vectorial equation

MA · −→A
(j)

= i M
(j)
B · −→B

(j)
+ i

−→
R

(j)

C (18)

Combination with (16) yields a linear system in
−→
B . In the implementation numerical convergence problems

were encountered associated with the evanescent components. In the numerical results shown further down in
this paper, related to relatively shallow depth cases, the evanescent modes are just neglected.

III. Experiments
Experiments were carried out with the Hexapode bench of Centrale Marseille. The internal diameter of the

tank was 0.97 m, the circular screen diameter 0.5 m. In the circular case the screen porosity was 23 %, in the
diameter case it was 18 %. The screens had the same thickness, 2 mm, and circular openings with a diameter
of 4 mm. Tests were done at 15 cm, 25 cm and 35 cm filling heights. Here we show results at a depth of 25 cm.

The range of frequencies was from 2 through 12 rad/s. When there is no screen, the first natural frequencies
(below 12 rad/s) of the sloshing modes are 5.25 rad/s and 10.34 rad/s. With a solid circular screen they are
8.29 rad/s for the inner sub-domain and 4.02 rad/s and 11.67 rad/s for the annular sub-domain. With a solid
diameter, they are 7.53 rad/s, 8.64 rad/s, 10.33 rad/s, 11.64 rad/s, 11.90 rad/s.

In the computations the discharge coefficient µ was taken equal to 0.5.
In the circular case, Fig. 2 shows the experimental and numerical added mass (left) and damping (right)

coefficients, for different amplitudes of motion.
In the perforated diameter case, Fig. 3 shows the numerical and experimental added mass coefficients, while

Fig. 4 shows the damping coefficients.
Good agreement is generally observed between the experimental and numerical hydrodynamic coefficients.
More results, with other screen arrangements, will be shown at the workshop.
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Figure 2: Circular screen. Added mass (left) and damping (right) coefficients.
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Figure 3: Screen along a diameter. Numerical (left) and experimental (right) added mass coefficients.
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Figure 4: Screen along a diameter. Numerical (left) and experimental (right) damping coefficients.
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