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Introduction

For offshore and naval applications, the wave forces acting on slender parts of the bodies can be described
by the Morison equation, which expresses the overall force in terms of a nonlinear drag force and a linear
inertia force that define an additional damping and added mass.

In frequency domain, the drag term of the Morison force needs to be linearized. In case of irregular waves,
Borgman [1] linearized the wave drag force in the Morison Equation using the random Gaussian process
assumption for the wave velocity. This linearized form was developed for a fixed vertical cylinder under the
action of a unidirectional wave.

However, for seakeeping and mooring analysis, the vectorial Morison equation is used to evaluate the wave
force on slender bodies in multi-directional flows. Therefore, this linearized form needs to be modified since
it does not obey vector operation rules.

The purpose of this paper is to present a new linearization method for the multi-directional flow. A compar-
ison between the new and the classical linearization will be presented against the time domain simulation in
the case of cylinder.

Morison equation and limitations of the existing linearization

In unidirectional wave flow, the Morison load on a fixed circular cylinder (per unit length), without current,
is given by:

fMorison � p1� CmqρS 9u�
1

2
CdρD |u|u (1)

Where D stands for the cylinder diameter and S its section, Cd the drag coefficient, Cm the inertia coefficient
and u the wave field velocity projected on the perpendicular plane to the principal axis element. If the
cylinder is in motion x, the velocity is replaced by the relative-velocity projected on the same plane:

fMorison � p1� CmqρS 9u� CmρS:x�
1

2
CdρD |u� 9x| pu� 9xq (2)

The drag fd and the inertia fi loads can be written as:

fi � p1� CmqρS 9u� CmρS:x (3)

fd �
1
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CdρD |u� 9x| pu� 9xq (4)

In the vectorial case, the Morison equation involves only the two velocity components along the plane normal
to the axis of the element. Therefore, for the cylinder local coordinate system pO, x, y, zq such as pOzq the
element axis, the Morison equation can be written as:
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In irregular waves and without current, u is a zero mean Gaussian random process. With the same assump-
tions as above, Borgman showed that the autocorrelation function Rfdfd of the drag force, can be written
simply in terms of the wave velocity autocorrelation function Ruu ([2] and [1]):

Rfdfdpτq � p
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CdρDq

2Ruup0q
2Gprq (6)

Where:
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Ruupτq

Ruup0q
(7)
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With the first order linearization of the function Gprq (because 0 ¤ r ¤ 1), it is possible to write:

Rfdfdpτq � p
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The Energy spectral density is then calculated, using the Fourier transform of the above equation:

Sfdfdpfq � p
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Finally, the linearized force is given by:

fd �
1

2
ρCdD
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Where σu is the standard deviation of the wave velocity. In the case where the cylinder is in motion, we
suppose that the relative-velocity is also a zero mean random Gaussian process so we can write:

fd �
1

2
CdρD
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In the vectorial case, this method faces two problems:

1. A common linearization constant cannot be calculated for the two components of the Morison drag
force.

2. The characteristics of water particle velocity (orbital velocity for example) cannot be modeled efficiently
without considering the correlation between between the 2 directional velocities.

One way to solve the first problem is to linearize each component of the drag force separately by considering
a unidirectional flow following each wave velocity direction:
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However, this method will underestimate the drag force since in its original form (Eq.5), the velocity norm
depends on the two other velocity components and will be always higher than the norm of one component.
Thus, a more complete model needs to be developed for an accurate linearization form.

Analytical model

We consider a fixed cylinder in 3D random wave flow. The cylinder is not supposed to be necessarily vertical
since we will work on its local coordinate system p

ÝÑe1 ,
ÝÑe2 ,

ÝÑn q with ÝÑn the cylinder’s vector axis. We will be
limited in our study to a two-dimensional case since the Morison equation depend on the projected wave
velocity as mentioned previously. Thus, the drag force and the wave velocity can be written in the local
coordinate system p

ÝÑe1 ,
ÝÑe2 ,

ÝÑn q as:
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Extending the Borgman’s linearization to a two-dimensional case seems to be difficult for the reason that the
autocorrelation function of each force component is complicated to determine analytically (need to calculate
multiple integrals of 4 variables: u1ptq, u2ptq, u1pt� τq and u2pt� τq). For simplification, a classic random
Gaussian vector model will be used for ÝÑu so its probability density function can be defined as:

ppu1, u2q �

1

2πσ1σ2

a

1� ρ122
exp

�

�

u1
2

σ1
2 �

u1
2

σ1
2 �

2u1u2ρ12

σ1σ2

2p1� ρ2
12
q

�

(15)

Where σ1 and σ2 are respectively the standard deviations of the two zero mean random Gaussian variables

u1 and u2 and ρ12 �
covpu1,u2q

σ1σ2

the correlation coefficient. The idea of this linearization is based on the energy
dissipation of the Morison drag force which will be calculated for the exact and the linearized formulations.
The linearization coefficient must provide the same energy dissipation for each model.

Mathematically, we define the energy dissipation as the expected value   . ¡ of the drag force mechanical
power

ÝÑ

fd.
ÝÑu . For the linear model, we can write:
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So the dissipated energy EL is calculated by:
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For the exact model, we can write:
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Using the expected value mathematical definition:
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With the polar transformation: u1 � rcospθqσ1 and u2 � rsinpθqσ2, the previous double integral can be
simplified in a single elliptic integral:
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By considering E � EL, we obtain:
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Where:
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Finally, the linearized force is given by:
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As the result shows, the linearization coefficient is expressed as a function of two non-dimensional parameters.
Using this two-parameter model, we fulfill requirements imposed by the two problems mentioned in the
previous section:

• The parameter a represents the two-dimensional aspect of the flow (problem 1).

• The parameter ρ12 expresses the correlation relation between the two velocity components u1 and u2

and therefore the wave field characteristics: linear, orbital, ... (problem 2).

For verification, in the case of a unidirectional wave field following ÝÑe1 direction (a � 1 and ρ12 � 0), we
have:
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We obtain the Borgman linearization constant in the unidirectional case.

For a 3D wave field, with a structure containing several Morison elements, each element is discretized on
Gauss integration points. The relative velocity of each integration point is projected in the local coordinate
system of the element. Next, K and

ÝÑ

fL are calculated in the local coordinate system then expressed in the
global system coordinate and summed.

Simulation results and discussion

In order to test this linearization, the Morison drag force is calculated in irregular waves for a fixed cylinder
in time and frequency domains. Cylinder dimensions are (R � 1m x H � 3m) and Cd � 0.7. As a wave
model, a JONSWAP spectrum is used with the parameters Hs � 1.0m, Tp � 12.0s and γ � 1.0. The water



depth is infinite. The wave time signal has been generated for 3 hours using a linear reconstruction of the
wave spectrum with a random phase for each frequency component. The power spectral density (PSD) of
each signal has been calculated in order to obtain the drag force RAOs.

To show the difference between the two linearizations (scalar and vectorial) in different configurations, the
force is calculated for the vertical and the horizontal position of the cylinder (linear and orbital wave fields)
for two headings β � 00 (head) and β � 450 (diagonal). The axis of cylinder is pOzq in the vertical case and
pOxq in the horizontal case. The wave heading is defined by the angle between the propagation direction
and the positive direction of the axis pOxq.

The figures bellow give the RAOs of the drag force components. As the results show, the frequency domain
solution seems to underestimate the drag force, due to the linearization effect. In addition, for β � 00,
the projected wave field is unidirectional so the two linearizations give the same results (figure 1 for the
horizontal and vertical case and are in agreement with the time domain solution (green plot).
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Figure 1: β � 00

However, for the diagonal heading β � 450 (figure 2), since the drag force will depend on more than one
velocity direction (pOxq and pOyq in the vertical case and pOzq and pOyq in the horizontal case), the vectorial
linearization (pink plot) is more accurate and the scalar linearization (brown plot) underestimates the drag
force especially for the horizontal case which corresponds to the circular wave filed.
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Figure 2: β � 450
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