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Highlights

· Experimental validation of a mathematical model of wave-induced flexural motion of a thin floating plate.

· First model of wave overwash of an ice floe, which is validated by laboratory measurements.

Introduction

Mathematical models of ocean surface waves travel-
ling through the sea ice covered ocean and impacting
the ice cover have been developed for over 40 years
now. The kernel of the models is a model of water
waves interacting with a solitary ice floe. The ice
floe is conventionally modelled as thin floating elas-
tic plate. Water motions are conventionally modelled
using potential flow theory.

Moreover, linear motions are assumed. However,
as the floe has a small freeboard, incident waves of
modest amplitudes are easily able to overwash the
floe (run over its upper surface). The presence of
overwash violates the assumption that motions are
small perturbations from the equilibrium, which un-
dergirds linear theory.

The impact of overwash on the motions of the
floe and the surrounding wave field have not been
investigated previously. More fundamentally, few at-
tempts have been made to validate the linear thin-
plate/potential-flow model.

In one notable exception, Montiel et al. (2013a,b)
conducted a series of laboratory wave tank experi-
ments to study the flexural motion of a floating thin
plastic disk, as a model ice floe. They showed the lin-
ear model was able to predict the motions accurately.
However, they attached a barrier to the edge of the
model floe to prevent overwash in the experiments.
Subsequently, their results provide no information on
the impacts of overwash.

Results of a new series of wave tank experiments
are reported here. In the experiments, no edge bar-
rier was used and the incident waves were able to
overwash the floe. The experimental measurements
are used to show the linear model is able to predict
the motions of the floe accurately, and, hence, that
overwash does not significantly affect floe motions
for the chosen parameter range.

This finding is used as the basis of a mathemat-
ical model of a wave overwashing an ice floe. The
model is validated by measurements of the overwash
depth recorded during the experiments. The model-
data comparison shows generally very pleasing agree-
ment and indicates the limit of validity of the model.

Experimental model

Experimental models of water waves interacting with
an ice floe were implemented at the Mitchell Hy-
drodynamics Laboratory, University of Melbourne,
Australia, and the Coastal Ocean and Sediment
Transport (coast) laboratories, Plymouth Univer-
sity, U.K. The models investigated one- and two-
dimensional wave motions, respectively. The latter
model is described here, and a selection of corre-
sponding results is presented.

A thin plastic plate was installed in the coast
wave basin, as a model ice floe, on water of depth
H = 0.5 m. The floe was loosely moored. Two differ-
ent plastics, with distinct material properties, were
used. First, a relatively dense and rigid polypropy-
lene plastic, with a manufacturer specified density
of ρpl = 905 kg m−3 and Young’s modulus E =
1600 MPa. Second, a relatively light and compliant
polyvinyl chloride (pvc) plastic with density ρpl =
500 kg m−3 and Young’s modulus E = 500 MPa.
Both plastics were provided with thicknesses D =
5 mm and 10 mm, and 20 mm and 40 mm (polypropy-
lene) and 19 mm (pvc). The plates were cut into
squares with side lengths 2L = 1 m.

A series of tests were conducted in which the
model floes were set in motion by regular incident
waves. The motions were recorded stereoscopically
by the Qualysis motion tracking system. Wave peri-
ods T = 0.6 s, 0.8 s and 1 s were used for the incident
waves. The corresponding wavelengths are 0.56 m,
1 m and 1.51 m, respectively, i.e. approximately half



the floe length, equal to the floe length and 1.5 times
the floe length. Four incident wave steepnesses were
tested: ka = 0.04, 0.08, 0.1 and 0.15, where k and
a denote the incident wave number and amplitude,
respectively.

Figure 1: Photos of mild and severe overwash.

A small gauge was deployed in the middle of the
upper surface of the floe to measure the depth of
overwashed fluid. Overwash occurred in approxi-
mately 60% of the cases tested. The polypropylene
floes, which have a relatively small freeboard, expe-
rienced the strongest overwash.

Figure 1 shows photos of overwash occurring in
the tests. The left-hand panel shows mild overwash
occurring for a 10 mm thick pvc floe and a 1 s pe-
riod incident wave with steepness 0.15. A bore wave
is visible in the shallow overwash. Bores are typ-
ical when overwash occurs. The right-hand panel
shows severe overwash occurring for a 10 mm thick
polypropylene floe and a 1 s period incident wave
with steepness 0.15. In this case bore waves trav-
elling up and down the plate have collided and, sub-
sequently, caused breaking.

For each test conducted, the recorded flexural
motions of the floe are converted into a spectral rep-
resentation via a decomposition into the floe’s nat-
ural modes of vibration. Thus, let ηm(t) denote
the vertical displacement of the mth marker. Af-
ter the initial transients have passed, the signal is
approximately periodic in time at the angular fre-
quency of the incident wave, ω. Therefore, a com-
plex amplitude Am is calculated such that ηm(t) ≈
Re {Ame−iωt}, using least-squares minimization.

Horizontal locations on the surface of the floe are
define by a Cartesian coordinate system (x, y). The
origin of the coordinate system is the geometric cen-
ter of the floe. The x coordinate points in the direc-
tion of the incident wave.

The floe’s orthonormal natural modes of vibra-
tion are denoted wj(x), where x = (x, y). Following
Kirchoff-Love thin-plate theory the modes satisfy the
governing equation

∆2wj = λ4
jwj ,

where λj are eigenvalues, plus free-edge conditions.
They are calculated using the finite element method
outlined by Meylan (2002).

The complex amplitudes Am are projected onto
a finite-dimensional space spanned by the dominant

natural modes of vibration, i.e.

Am ≈
∑
j∈Λ

ξex
j wj(xm)

where xm denotes the location of the mth marker.
The set Λ = {1, 2, 5, 6, 7, 9, 11} contains indices of the
modes used for computations. Only motions sym-
metric with respect to the direction of the incident
wave are considered. The first two modes represent
the rigid body motions of the floe: heave and pitch,
respectively. The final five modes represent the pri-
mary flexural motions. The weights ξex

j are obtained
via a least squares minimization routine.
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Figure 2: Motion of floe markers (left), and corre-
sponding four dominant flexural modes (right).

Figure 2 shows an example decomposition of the
floe motion into the natural modes. The example is
for a 5 mm thick polypropylene floe, and a 0.8 s pe-
riod incident wave with steepness 0.1. The left-hand
panel shows the recorded vertical displacements of
the markers over a short time interval. The right-
hand panels show the corresponding four dominant
weighted flexural modes.

Linear mathematical model

Following potential flow theory and assuming time-
harmonic conditions, the water’s velocity field is de-
fined by the gradient of the scalar velocity potential
Re {φ(x, y, z)e−iωt}. Locations in the water are de-
fined by the Cartesian coordinate system (x, y, z),
where x = (x, y) defines horizontal locations and z is
the vertical coordinate. The time-independent com-
ponent of the velocity potential, φ, satisfies Laplace’s
equation throughout the water domain, i.e.

∆φ = 0 for x ∈ R2 and −H < z < 0, (1a)

and a zero normal flow bed condition

φz = 0 for x ∈ R2 and z = −H. (1b)

On the linearised water surface away from the floe,
the potential satisfies the free-surface condition

φz =
ω2

g
φ for x /∈ Ω and z = 0. (1c)

On the linearised interface between the water surface
and the underside of the floe, the potential is coupled



to the floe motion via kinematic and dynamic condi-
tions, respectively

φz = −iω

∞∑
j=1

ξma
j wj and (1d)

iω

g
φ =

∞∑
j=1

(
1 + βλ4

j

)
ξma
j wj − ω2γ

∞∑
j=1

ξma
j wj , (1e)

Here, γ = ρplD/ρg is the scaled mass of the floe
and β = ED3/{12(1 − ν2)ρg} is the scaled flexural
rigidity, where ν = 0.4 (polypropylene floes) and 0.3
(pvc) are typical values of Poisson’s ratio.

The velocity potential is expanded as

φ = φI + φD − iω
∞∑
j=1

ξma
j φR

j (2)

where φI is the incident wave potential with ampli-
tude a. The sum of the incident wave and diffraction
potentials, φI + φD, is the solution of the problem in
which the floe is held in place, i.e. equations (1a–d)
with ξma

j = 0 (j = 1, 2, . . . ). The radiation poten-

tials, φR
j (j = 1, 2, . . . ) are solutions of the problems

in which the floe oscillates in one of its degrees of
freedom with unit amplitude, i.e. equations (1a–d)
with ξma

i = δij (i = 1, 2, . . . ). The diffraction and ra-
diation potentials are calculated by using a Green’s
function to convert the boundary value problems to
integral equations, which are solved numerically via
a constant panel method (Meylan, 2002).

A linear system for the modal weights, ξma
j , is ob-

tained by applying the dynamic coupling condition
(1e) to the expanded velocity potential (2) and tak-
ing inner-products with respect to the subset of the
modes defined by Λ. The system is expressed is(

K + C− ω2M− ω2A(ω)− iωB(ω)
)
ξma = f(ω).

Here K, C and M are the stiffness, hydrostatic-
restoring and mass matrices:

K = dβλ4
jc, M = γI and C = I,

where d. . . c denotes a diagonal matrix and I is the
identity matrix. The real matrices A and B are
known as the added-mass and damping matrices, re-
spectively, and are defined element-wise by

ω2Aij + iωBij =
ω2

g

∫∫
Ω
φR
j (x, 0)wi(x) dx.

The forcing vector, f , is defined by

fj =
iω

g

∫∫
Ω

(
φI(x, 0) + φD(x, 0)

)
wj(x) dx.

The system is solved for the modal weights, which
are contained in the vector ξma.

Results

Figure 3 shows linear-model predictions of the mag-
nitudes of the dominant modes and values calcu-
lated from the experimental data. The magnitudes
of the modal amplitudes are scaled with respect to
the incident amplitude, a. Results shown are for the
polypropylene floes, which experience stronger over-
wash. The corresponding results for the pvc floes
are consistent.

The experimental data indicate the floe’s motion
is, essentially, linear, i.e. the modal weights scale
with the incident amplitude. Small discrepancies
are notable for certain cases, for example, the 1 s
period, 0.08 steepness incident waves for a 10 mm
thick polypropylene floe. However, no consistent de-
pendence is evident in those cases, and experimental
errors are a probable cause of the discrepancies.
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Figure 3: Comparisons of scaled modal weight mag-
nitudes extracted from experimental data (triangles)
and predicted by theoretical model for polypropy-
lene floes (black circles). Incident steepnesses are:
ka = 0.04 (blue, triangles down); 0.08 (green, up);
0.1 (magenta, right); and 0.15 (red, left).

The model is able to capture the magnitudes of
the modal weights accurately. The model predic-
tions are marginally more accurate for the thinner
floes. Note that the logarithmic scale used to dis-
play the results emphasises errors for modal weights
with small magnitudes. The model-data agreement
found indicates that nonlinear phenomena inherent
in wave-floe interactions, in particular, overwash, but
also slamming and drift, have only a negligible effect
on flexural motions.

Overwash model

The linear model is extended to a nonlinear model
that incorporates overwash, by assuming:

(i) floe motions are governed by linear theory;

(ii) the height of the wave above the floe edges and
its horizontal velocity forces overwash; and

(iii) overwash does not influence the surrounding
wave field.



The model is two-dimensional (one horizontal dimen-
sion and one vertical dimension). Figure 6 shows an
example snapshot of motions predicted by the model.

floe

Figure 4: Overwash model: overwash fluid surface
(green) and surrounding fluid surface (blue).

The overwashed fluid is modelled by the shallow-
water equations, which, in conservative form, are

(h)t + (hu)x = 0. (3a)

and (hu)t + (hu2 + 1/2 ∗ gh2)x = 0. (3b)

Here h(x, t) is the depth of the overwashed fluid,
u(x, t) is the depth-averaged horizontal fluid veloc-
ity. Equations (3) account for the motion of the floe
beneath the fluid. They are solved numerically us-
ing the finite volume method outlined in Kurganov
& Tadmor (2000) and Kurganov et al. (2001) for
spatial discretisation in conjunction with a total
variation diminishing Runge-Kutta method for time
stepping. The numerical scheme accurately resolves
the bores produced by the shallow-water equations
which is evident in figure 6.

D
e
p
t
h

(
m

m
)

6

4

2

0

Steepness⇥e�2 4 8 10 15 4 8 10 15 4 8 10 15

0.6 0.8 1.0Period (s)

S
t
a
n
d
a
r
d

D
e
v
ia

t
io

n
⇥

e
�

4

4 8 10 15 4 8 10 15 4 8 10 15

0.6 0.8 1.0

16

8

0

Steepness [×102]

4 8 10 15 4 8 10 15 4 8 10 15

M
ea

n
d
ep

th
[m

m
] 6

3

0

T = 0.6 s T = 0.8 s T = 1.0 s

D
e
p
t
h

(
m

m
)

6

4

2

0

Steepness⇥e�2 4 8 10 15 4 8 10 15 4 8 10 15

0.6 0.8 1.0Period (s)

S
t
a
n
d
a
r
d

D
e
v
ia

t
io

n
⇥

e
�

4

4 8 10 15 4 8 10 15 4 8 10 15

0.6 0.8 1.0

16

8

0

Steepness [×102]

4 8 10 15 4 8 10 15 4 8 10 15

S
t.

d
ev

.[
×
1
0
4
,m

m
]

16

8

0

T = 0.6 s T = 0.8 s T = 1.0 s

Figure 5: Comparisons of model overwash pre-
dictions (blue circles) with experimental data (red
squares) for 5 mm thick polypropylene floes.
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Figure 6: As in figure 5 but for a 10 mm thick floe.

Figures 5–6 show example comparisons of model
predictions of the overwash depth mean and stan-
dard deviation at the centre of the floe and values
calculated from the experimental data. Results are,
again, for polypropylene floes.

In general:

• overwash becomes deeper as incident waves be-
come steeper and the incident period increases;

• and overwash tends to be deepest for the thin-
ner floes.

In terms of the model-data agreement:

• the model tends to slightly overestimate the
mean depth and underestimate the standard
deviation;

• the model is marginally more accurate for the
polypropylene floes; and

• the model is least accurate for deep overwash
(greater than approximately 5–6 mm), presum-
ably because the model assumptions are no
longer valid in the deep overwash regime.

Summary

1. A linear model accurately predicts the motions
of a model floe induced by regular incident
waves.

2. A relatively simple model, in which overwash
is forced by the linear model, predicts mean
overwash depth with pleasing accuracy.
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