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highlights: 

 oblique water entry of a wedge with vortex wake is simulated 

 the Kutta condition is imposed at the wedge apex and the local pressure jump is removed 

1. Introduction 

Wedge water entry is one of the most typical fluid/structure impact problems. For water entry of a 

symmetric wedge with only vertical motion, Howison et al. (1991), Mei et al. (1999), Korobkin & Iafrati (2005) 

presented the analytical solutions based on the Wagner theory; Dobrovol’skaya (1969) considered the fully 

nonlinear similarity solution; Zhao & Faltinsen (1993), Lu et al (1999), Wu et al (2004), Battistin & Iafrati 

(2003) simulated the nonlinear impact through the boundary element method (BEM). For water entry of an 

asymmetric wedge or oblique water entry, typical work include those by Iafrati & Semenov (2006) and Xu et al 

(2008, 2010). In their results pressure jump was observed at the wedge apex. As there is transverse flow passing 

the sharp corner, such discontinuity or singularity in the potential flow was not unexpected. In real flow there 

would be strong vortex shedding at a sharp corner. To simulate water entry of a wedge with transverse flow at its 

tip, flow separation due to vortex shedding needs to be treated properly. Riccardi & Iafrati (2004) investigated 

the vortex shedding of the water entry of an asymmetric wedge through conformal mapping, although the effect 

of the free surface elevation was ignored. Point vortex and Kutta condition were introduced to remove the 

velocity singularity at the apex. 

The general problem of vortex shedding at a sharp corner of a marine structure has been receiving extensive 

attentions. Downie et al (1988) studied the vortex shedding of a rectangular barge in waves. Kristiansen & 

Faltinsen (2010) simulated the vortex shedding of a rectangular box in waves through BEM. The damping 

effects due to the shed vortices were accounted for properly. However, it seems that there is far less work in the 

context of water entry of a wedge, which is the focus of the present study. A Kutta condition for numerical 

simulation is imposed at the sharp edge. The pressure jump at the wedge apex is removed. Results for the free 

surface profile and pressure distribution are provided. 

2. Mathematic equations 
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(a)            (b) 

Fig.1 illustration of (a) the wedge water entry with vortex shedding and (b) the local wake surface 

The velocity potential theory is adopted to describe the flow field since the viscosity and compressibility 

effects are less important during high speed water entry over a short period of time. As shown in Fig.(1a), the 

origin of the space-fixed  Cartesian coordinate system zox   is located on the initially calm water 



surface with z  pointing upwards. The introduced velocity potential   satisfies Laplace equation in the fluid 

domain 
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On the body surface 
0S , the boundary condition can be written as 
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where ),( WUU 


is the translational constant velocity of the body and ),( zx nnn 


 is the unit normal vector 

pointing out of the fluid domain. In the Lagrangian framework, the free surface boundary conditions can be 

written as 
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When there is transverse flow at the wedge apex, vortex wake will be shed into the fluid. On the wake 

surface 
wS , the dipole strength can be written as 

  ww                    (5) 

while the normal velocity across 
wS is continuous, or 
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In Eq.(5) 

w  and 

w  are the velocity potentials on the two sides of the wake surface, as shown in Fig.(1b). At 

the apex of the wedge, we impose the Kutta condition in the following form (Xu & Wu 2013) 
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where the tangential vector in 

apexxl 

 has the same direction as 

apexx
l 

  , as shown in Fig.(1b). The continuity 

of the pressure p  across the wave surface gives 
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We notice that the wedge water entry problem usually starts from a contact point. An ideal approach is to 

use the stretched coordinate system (Wu et al 2004). It has the advantage that both the computational domain 

and the element size remain similar size in the stretched system as body continues to enter water in the physical 

domain. We define 

Wts  , Uth                    (9) 

In the stretched coordinate system  o , we write 

),,(),,( tstyx   , sx  , sy              (10) 

Laplace equation in the stretched system retains the same form, while the body surface boundary condition 

becomes 
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and the free surface boundary conditions can be written as 
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To solve the above equations, following the numerical procedure of Xu & Wu (2013), we have the boundary 

integral equation at 1m  time step  
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where 







 arctan),( qpH , 

1wS is the dipole element attached to the sharp edge, 
j is the point vortex 

formed from vortex dipole element in the thj )1(   time step. 

3. Results and discussions 

-2 0 2

-1

0

1

2



'

 s=0.5

 s=1.0

 s=2.0

 s=4.0

 s=8.0

-2 -1 0 1 2
-4

0

4

2
p

/
W

2

'

 Xu, Duan &Wu (2008)

 s=0.5

 s=1.0

 s=2.0

 s=4.0

 s=8.0

 

(a)        (b) 

Fig.2 oblique water entry of a wedge, (a) free surface profile and (b) the pressure distribution,  '  
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(a)      (b)      (c) 

Fig.3 oblique wedge water entry with 4/  RL
, 0.1s , (a) 3.0 (b) 5.0  (c) 7.0  

The work is still on-going and only some preliminary results from the simulation are presented here. 

Oblique water entry of a symmetric wedge at constant velocity with left and right deadrise angles 

4/  RL
, 5.0/  WU  is considered. The initial free surface profile and the velocity potential are 

prescribed at 001.0s  and are obtained from the similarity solution without vortex shedding. At this moment, 

there is just one vortex dipole of the same size of element as that on the wedge surface at its apex. The 

simulation is then carried out based on the procedure discussed in the previous section. The shed vortex wake is 

updated through Eq.(8). Figure 2 gives the obtained results. It can be seen that unlike the solution without the 

vortex wake, the pressure is continuous at the tip. Fig.2 also shows that the variations of the free surface profile 

and pressure distribution with s  in the stretched system are hardly visible. We note that negative pressure 

exists near the jet root of the left hand side of the wedge. Air could be sucked into the fluid and air cavities could 

be formed. 



Further simulations are carried out with different  . Fig.3 gives the pressure distribution at 

7.0,5.0,3.0 . Comparing with the similarity solution without vortex shedding (Xu, Duan & Wu 2008), the 

pressure jump at the wedge apex has been removed. This is a result of the imposed Kutta condition and vortex 

wake, through which the flow velocity becomes continuous. The pressure on the left hand side of the wedge is 

lower than the similarity solution, while the pressure on the right hand side has a lower peak and a smaller slope. 

We note that when 7.0 , the pressure on the left hand side of the wedge has two troughs, which may be due 

to the flow induced by the shed vortices. Further analysis and results will be provided at the Workshop. 
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