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1 Introduction

Violent liquid sloshing is of concern to cargo tank designers due to the problems of safety in extreme
loadings. It is an interesting topic with still some disputable problems. For example Abramson, Bass,
Faltinsen and Olsen [1] investigated the sloshing and resultant loads in liquid natural gas carriers for
different tank geometries and liquid fill depths. Ibrahim [3] provided a comprehensive study with
examples of free tank motions. Cooker [2] analysed with experiments a horizontal rectangular wave
tank which swings at the lower end of a pendulum. Ten, Malenica and Korobkin [5], presented a semi-
analytical approach for fluid-structure interactions inside tanks in different impact situations with
high and low fillings. Our work is about the sloshing of standing waves inside a closed highly filled
container. Unsteady two-dimensional (2-D), irrotational flow is treated. The liquid-roof interaction
is discussed with and without the effect of gravity and a comparison is made. The short-time model
of the liquid-roof impact is governed by a Mixed Boundary Value Problem (MBVP), which is solved
numerically and using the asymptotic methods.

2 Mathematical formulation

In figure 1, a stationary highly filled rectangular tank, containing an inviscid incompressible liquid is
shown. The flow is 2-D and irrotational and surface tension force is neglected. The container has height
H and length 2L and lies in the region ỹ ≥ 0. Here ỹ = 0 is the bottom and ỹ = H is the roof of the
container, ỹ = H−h is the still water level, and x̃ = ±L are the rigid impermeable walls. The lengths,
time, velocity potential and pressure are scaled by H,

√
H/g, h

√
Hg and ρgh, respectively, where g

is the gravitational acceleration and ρ is the constant density. The small parameter ε = h/H � 1 is
responsible for linearisation. In non-dimensional variables (without tilde), the initial shape of the free
surface is given by the equation y = f(x), f(x) = 1 − ε + 2ε

λ
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Figure 1: Container description with free surface at its level state.

Considering the container to be without the rigid roof, in non-dimensional linearised initial bound-



ary problem at the leading order the velocity potential φl(x, y, t) and the surface elevation ηl(x, t) read

φl(x, y, t) =
∞∑
n=1

ān cosh(kny) cos(knx) sin(wnt), (1)

ηl(x, t) =
2

λ

∞∑
n=1

an cos(knx) cos(wnt), an = −ānωn cosh(kn), (2)

where the angular frequencies ωn are related to the wave numbers kn = nπ/λ by the dispersion
relation ωn =

√
kn tanh(kn), for n ∈ N . In the next section we introduce the rigid roof to the tank,

we decompose the velocity potential φ(x, y, t) and the surface elevation η(x, t) into two parts. This
has been done by adding unknown functions: a so called correction velocity potential φc(x, y, t) and a
correction surface elevation ηc(x, t) resulting in φ = φc + φl and η = ηl + ηc respectively.

3 Semi-analytical solution

At the leading order, we derive the linearised non-dimensional MBVP, with gravity and the rigid roof
included. During the early stage of the impact, with some asymptotic analysis, we have found that
gravity has a small influence. We define δ � 1 to stretch the time t = t∗+ δt̂, t = t∗ instant of impact,
consequently the other variables, x = δ1/2x̂, y = δ1/2ŷ, φc(x, y, t) = δ1/2φ̂c(x̂, ŷ, t̂), xc0(t) = δ1/2x̂c0(t̂)
and ηl(x, t) = δη̂l(x̂, t̂). By combining the dynamic and kinematic boundary conditions we arrive at
(without hat)

∂2φc
∂t2

+ δ
3
2
∂φc
∂y

= 0 |x| > xc(t), y = 0, (3)

where x = xc(t) is where the free surface meets the roof. The corresponding limiting problem as δ → 0
is depicted in Figure 2. This problem does not account for gravity.
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Figure 2: The MBVP at the leading order.

Working with stretched variables, we can approximately replace the wall and the bottom conditions
with the far-field condition given in Figure 2. With the condition introduced by Wagner [6] at the
contact points and the displacement potential Φ(x, y, t) =

∫ t
0 φc(x, y, τ)dτ introduced by Korobkin [4],

we are able to calculate semi-analytically the leading order position of the contact point, x = xc0(t),
during impact. Consequently the hydrodynamic pressure distribution can be found (see Figure 3).

4 Numerical solution

A collocation method was used for the symmetric flow considered in the original coordinates x
and y. The unknowns, velocity potential φ(x, y, t), surface elevation η(x, t) and the pressure on the
roof p(x, 0, t) are respectively presented by Fourier series. The domain is discretized into N regularly
spaced nodes (N = 350 in our calculations).



The combined kinematic and dynamic boundary conditions (with gravity included) lead to a sys-
tem of the form

~η = ~ηl −A−1B ~P −A−1
M−1∑
m=1

Gtm~p tm , (4)

where the initial pressure ~p t1 , found in the previous section, with respect to this algorithm is given.
The tri-diagonal matrix A is associated with unknown and known surface elevation vectors, ~η and
~ηl respectively. The matrix G is calculated at every time step while the matrix B is independent of
time and depends only on the time step length. The pressure ~P and surface elevation ~η are to be
determined at the instant t = tM . However, the fact that on the free surface, xc0(tM ) < x < 1, we
have p(x, tM ) = 0 and on the impact region, 0 < x < xc0(tM ), we have η(x, tM ) = 1, with some
rearrangements makes the system (4) solvable on its own. The free surface and the wetted region are
distinguished and updated at each time step by calculating the position of x = xc0(tM ) as part of
the solution. The pressure vector ~p tm is known from the previous time steps t = tm, for 1 ≤ m ≤M−1.

Continuing with the stretched variables introduced from Section 3, we study the gravity influence
on the length of the wetted region during the impact stage, that is xc0(t) + δ · xc1(t). The correction
due to gravity xc1(t) in Figure 4b, is found to be almost completely insignificant at the early stage of
impact. As time goes on the effect of gravity is that it decreases the length of the wetted region and
even at the very late period of this stage, its effect is found to be small. Figure 4a shows the wetted
length with and without gravity. More results of the numerical simulation will be presented at the
workshop.
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Figure 3: Semi-analytical pressure distribution without gravity at: (a) t = 1.0790; (b) t = 1.5760.

Figure 4: Contact point position with correction due to gravity, here t = 0 is the impact time: (a) The leading order
contact point, blue line,and the contact point with correction due to gravity, red line; (b) details of correction xc1(t) due
to gravity,for the contact point position.
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