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Highlights:

• We set the level of the GN model to Level III, i.e., GN-3 model, and use it to compare the results
with the results of a program we developed based on the theory of BOUSS-2D.

• For nonlinear shallow water waves, we increase the wave amplitude; both the GN-3 results and the
Boussinesq results are presented and compared with the stream function theory.

1 Introduction

Nwogu’s (1993, 1996) Boussinesq-type equations are widely used to study wave-current interaction, wave
breaking, run-up (Nwogu and Demirbilek, 2001, 2010), among others. Nwogu’s (1993) Boussinesq-type
equations are based on the assumption that the wave heights are much smaller than the water depth. This
may limit the ability of the equations to describe highly nonlinear waves in shallow water, and therefore
this led Wei et al. (1995) to derive a fully nonlinear form of the equations. Wei et al. (1995) derived the
equations from the dynamic free-surface boundary condition by retaining all nonlinear terms, up to the order
of truncation of the dispersive terms. Nwogu (1996) derived a more compact form of the equations. The
computer program BOUSS-2D is based on the Boussinesq-type equations derived by Nwogu (1993, 1996).
The equations are depth-integrated equations for the conservation of mass and momentum for nonlinear
waves propagating in shallow and intermediate water depths.

The Green-Naghdi approach (see e.g., Demirbilek and Webster, 1992) is fundamentally different from
the perturbation method which is used in deriving the Boussinesq model. The GN model only introduces an
assumption on the velocity variation in the vertical direction across the fluid layer or sheet. No restriction is
placed on the wave amplitude. Following the development of different polynomial orders for the description
of velocity in the vertical direction, the GN theory can be of different levels, such as I (GN-1), II (GN-2),
III (GN-3), and so forth. Zhao et al. (2014) applied the GN-3, GN-5 and GN-7 models to some wave
transformation problems, and they showed that high-level GN models can simulate strongly dispersive and
strongly nonlinear waves.

In this study, we set the level of the GN model to Level III. And use the GN-3 model to compare
the results with a computer program we developed based on the theory of the BOUSS-2D model to study
nonlinear wave propagation for periodic and solitary waves.

2 The BOUSS-2D model

In the BOUSS-2D model, the vertical profile of the flow field is obtained by expanding the velocity potential,
Φ(x, z, t), in a Taylor series about an arbitrary elevation, zα, in the water column. For waves of length, L,
much longer than the water depth, h, the series is truncated at the second order resulting in a quadratic
variation of the velocity potential over depth:

Φ(x, z, t) = φα + µ2(zα − z)[∇φα · ∇h]
+ 1

2µ
2
[
(zα + h)2 − (z + h)2

]
∇2φα

(1)



where φα = Φ(x, zα, t), ∇ = (∂/∂x, ∂/∂y), and µ = h/Lis a measure of frequency dispersion. The horizontal
and vertical velocities are obtained from the velocity potential as:

u(x, z, t) = ∇Φ = uα + (zα − z)[∇(uα · ∇h) + (∇ · uα)∇h]
+1

2

[
(zα + h)2 − (z + h)2

]
∇(∇ · uα)

(2)

w(x, z, t) =
∂Φ

∂z
= −[uα · ∇h+ (z + h)∇ · uα] (3)

where uα = ∇Φ|zα is the horizontal velocity at z = zα. Given a vertical profile for the flow field, the
continuity and Euler (momentum) equations can be integrated over depth, reducing the three-dimensional
problem to two dimensions. Nwogu and Demirbilek (2001) gave the revised form of the fully nonlinear
equations as

η,t +∇ · uf = 0 (4)

uα,t + g∇η + (uη · ∇)uη + wη∇wη+
(zα − η)[∇(uα,t · ∇h) + (∇ · uα,t)∇h]
+1

2

[
(zα + h)2 − (η + h)2

]
∇(∇ · uα,t)

−[uα,t · ∇h+ (η + h)∇ · uα,t]∇η
+[∇(uα · ∇h) + (∇ · uα)∇h+ (zα + h)∇(∇ · uα)]zα,t = 0

(5)

where zα is now a function of time and is given by zα + h = 0.465(h + η). The volume flux density uf is
given by:

uf = (h+ η)

{
uα +

[
(zα + h)− (h+η)

2

]
[∇(uα · ∇h) + (∇ · uα)∇h]

+
[
1
2 (zα + h)2 − 1

6 (h+ η)2
]
∇(∇ · uα)

}
(6)

3 The GN-3 model

In the GN-3 model, the horizontal velocity along the water column also changes as a quadratic polynomial.
It is

u(x, z, t) = u0(x, t) + u1(x, t)z + u2(x, t)z
2 (7)

The GN-3 equations are as follows:

∂β

∂t
=

K∑
n=0

βn

(
wn − ∂β

∂x
un

)
(8)

∂

∂x
(Gn + gS1n) + nEn−1 − αn ∂

∂x
(G0 + gS10) = 0 for n = 1, 2, 3, · · · ,K (9)

where K = 3 in this work. For more details on the GN-3 model, the reader is referred to Demirbilek and
Webster (1992), Webster et al. (2011) and Zhao et al. (2014).

4 Test cases

In this section, we simulate periodic nonlinear regular waves in shallow water generated through the stream
function theory at the wavemaker through the computer programs we developed. The water depth is
h = 0.4m and the wave period is T = 2.02s. We increase the wave height H from 0.16m to 0.20m, 0.24m
and 0.28m. This means that the nonlinearity parameter, H/h, changes from 0.4 to 0.5, 0.6 and 0.7. The
results of the Boussinesq equations are shown in Figure 1. The GN-3 results are shown in Figure 2.

For this case, the dimensionless depth is around kh = 0.63. Both the Boussinesq model and the GN-3
model should be able to simulate waves with this dispersive property. But we see that the results from Figures
1 and 2 show that neither of them can simulate successfully the largest-amplitude wave when H/h = 0.7.
For waves when H/h = 0.5 and 0.6, we observe that the GN-3 results agree with the stream function wave
theory better than the Boussinesq model.
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Figure 1: Snapshots at t=40s, solid line: Boussinesq model, dashed line: stream function wave theory.
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Figure 2: Snapshots at t=40s, solid line: GN-3 model, dashed line: stream function wave theory.
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Figure 3: H/h = 0.6
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Figure 4: H/h = 0.7

We also studied the steady solitary wave solution from the GN-3 and Boussinesq models. Figure 3 shows
that the Boussinesq model shows some differences compared with the Euler solution when H/h = 0.6. Figure
4 shows that the GN-3 model can simulate large amplitude solitary wave even when H/h = 0.7. More results
will be presented at the workshop.

5 Conclusions

In this paper, we studied the GN-3 and Boussinesq models comparatively. We determined that the GN-3
model is more suitable to simulate strongly nonlinear solitary waves. For periodic waves, it appears that
both models are incapable of simulating very large waves that are near breaking.
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