UNIVERSITY OF BRISTOL

Examination for the Degree of B.Sc. and M.Sci. (Level 5)

MULTIVARIABLE CALCULUS

 $\begin{array}{c} {\rm MATH~20901} \\ {\rm (Paper~Code~MATH\text{-}20901)} \end{array}$

January 2016, 1 hours 30 minutes

This paper contains \mathbf{two} questions. Both answers are used for assessment.

Calculators are **not** permitted in this examination.

On this examination, the marking scheme is indicative and is intended only as a guide to the relative weighting of the questions.

Do not turn over until instructed.

Cont... MVC

1. (a) (6 marks)

A function $\mathbf{F}: \mathbb{R}^m \to \mathbb{R}^n$ maps $\mathbf{x} = (x_1, \dots, x_m)$ into $\mathbf{F} = (F_1, \dots, F_n)$. Define the derivative of the map, $\mathbf{F}'(\mathbf{x})$. What is special about $\mathbf{F}'(\mathbf{x})$ if \mathbf{F} is a linear map?

(b) (6 marks)

If $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $\mathbf{F}(\mathbf{x}) = (x_1 x_2^2 / x_3, \cos(x_1 x_3))$, calculate $\mathbf{F}'(\mathbf{x})$.

- (c) Two functions $\mathbf{u}(\mathbf{x})$ and $\mathbf{v}(\mathbf{x})$ map $\mathbb{R}^3 \to \mathbb{R}^3$, where $\mathbf{x} = (x_1, x_2, x_3)$.
 - (i) (8 marks) Define $\nabla(\mathbf{u} \cdot \mathbf{v})$ in terms of $\mathbf{u}'(\mathbf{x})$ and $\mathbf{v}'(\mathbf{x})$.
 - (ii) (10 marks) By considering $\mathbf{u} \times (\nabla \times \mathbf{v})$ and $\mathbf{v} \times (\nabla \times \mathbf{u})$ show that

$$\nabla (\mathbf{u} \cdot \mathbf{v}) = (\mathbf{u} \cdot \nabla)\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{u} + \mathbf{u} \times (\nabla \times \mathbf{v}) + \mathbf{v} \times (\nabla \times \mathbf{u}).$$

- (d) Let $\mathbf{r}: \mathbb{R}^2 \to \mathbb{R}^2$ be a map defining the transformation $x = r \cos \theta$, $y = r \sin \theta$.
 - (i) (6 marks)

 Compute the Jacobian determinant of the transformation, $\frac{\partial(x,y)}{\partial(r,\theta)}$. When is the map invertible?
 - (ii) (6 marks) Construct a local basis $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$ in the new coordinate system.
 - (iii) (8 marks) For a scalar function f(x, y) derive the expression for ∇f in the local basis $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$. Hence, or otherwise show that

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = \left(\frac{\partial f}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial f}{\partial \theta}\right)^2$$

Cont... MVC

2. (a) (8 marks)

Calculate the gradient of the function $f(\mathbf{r}) = \sin(xz) - \sin(yx)$ where $\mathbf{r} = (x, y, z)$ and confirm in this case that $\nabla \times \nabla f = 0$.

(b) (6 marks)

For any scalar functions f, g, prove that $\nabla \times (f \nabla g) = \nabla f \times \nabla g$.

(c) (8 marks)

You are given that a vector field $\mathbf{v}(\mathbf{r})$ is everywhere parallel to the normals of a family of surfaces $g(\mathbf{r}) = \text{constant}$. Show that

$$\mathbf{v} \cdot (\mathbf{\nabla} \times \mathbf{v}) = 0$$

- (d) In this part of the question, consider the vector field $\mathbf{f} = (2z, x, y^2)$ and the surface S described by the paraboloid $z = 4 x^2 y^2$ in $z \ge 0$.
 - (i) (6 marks) Calculate $\nabla \times \mathbf{f}$.
 - (ii) (12 marks)

Calculate the surface integral

$$\int_{S} \mathbf{\nabla} \times \mathbf{f} \cdot d\mathbf{S}$$

in which $d\mathbf{S}$ is directed outwards from the surface of the paraboloid.

(iii) (10 marks)

State Stokes's theorem and use it to make an independent calculation of the integral.