MATH20901 Multivariable Calculus: Problems 3

1. Let (x,y,2) =r(q) = r(q1, ¢2, g3) define an orthogonal coordinate system.

(a) Write down the Jacobian matrix r'(q) and express the result in terms of the orthogonal
basis vectors .

(b) Show that the inverse of the Jacobian matrix is
10x 10y 102
h% 8q1 h% 6(]1 h% 6(]1
_ 10oxr 10y 10z
)" = 2o Bow How
2042 N3 0q2 N5 0Q2
10x 10y 102
h30gs  h30gs h3 Ogs

[HINT: an orthogonal matriz R has inverse RT].

0
(c) Use the result from (b) to calculate a—¢, where ¢ is the latitudinal angle in spherical
Y

coordinates.
2. Spherical coordinates are defined by
r(r,¢,0) = (rsin¢cosf,rsin ¢sinf, rcos ¢).
(a) Calculate the basis vectors T, QAS, and é, as well as the scale factors h,, hg, and hy.

(b) Show that

g—;:(ﬁ, g—z = —T, %:singbé, aa—(g zcosgbé, g—g:—singbf‘—cosgb(fb.
c¢) Calculate V - u in spherical coordinates, where u = u, + u¢(2) + u8.

()
(d) Treat yourself. How about V x u 7
(e) Finally, write down Af in spherical polars.
)
)

a) Let ¢(r) = f(r), where f is a function of a single variable, r = |r|. Compute Ag.
b) Let u € R3 be a nonzero vector. Compute = ;}r.
r

3.

(
(
4. This question concerns the transformation to elliptical coordinates (u,v) given by the relation
x = acosh pcosv, y = asinh psinv

where p € [0,00), v € [0, 27).
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(a) Show that curves of constant u correspond to ellipses in the (z,y)-plane and that curves
of constant v are hyperbolae.

b) Derive a basis [Al,, v for elliptical coordinates a1 (], in doin SO, show that the scale factors
p g
are

h, = h, = a\/sinh2 @+ sin’ v,
Also confirm that f» and & are orthogonal.

(c) Calculate the Jacobian determinant. Is the mapping of coordinates always invertible 7 If
not, when is it non-invertible ?

(d) Express V f in elliptical coordinates.

(e) Find Af in elliptical coordinates.
5. (
(

(c) Hence show that A?(r?logr) = 0 where A? = AA is called the biharmonic operator.

)

)
a) For the two scalar function f, g, derive the relation A(fg) = fAg+ gAf+2Vf-Vg
b) Assuming that we are working in 2D so that r = (z,y,0) show that A(r?logr) = 4+4logr.
)



