

MATH20901 Multivariable Calculus

Problems Classes Week 6

1. Let $\mathbf{v}(x, y) = (y^2, -xy)$ be a vector field on \mathbb{R}^2 , and let C be the part of the circle $x^2 + y^2 = 1$ that starts at $(1, 0)$ and ends at $(0, 1)$, oriented clockwise. Compute $\int_C \mathbf{v} \cdot d\mathbf{r}$.

2. Calculate

$$\int_C \mathbf{r} \cdot d\mathbf{r}$$

where C is any curve connecting the point \mathbf{r}_1 to \mathbf{r}_2 .

3. (i) A vector field \mathbf{F} is given by $\mathbf{F}(x, y, z) = (-y, x, z)$. Calculate $\nabla \times \mathbf{F}$.

(ii) The surface, S , of an open cone of unit height is defined by $z^2 = x^2 + y^2$ for $0 < z < 1$.

Design a mapping $\mathbf{s}(u, v)$ which parametrises the surface S . Hence calculate the vector $\mathbf{N}(u, v) = \mathbf{s}_u \times \mathbf{s}_v$. What geometric property does this vector have?

(iii) Calculate the surface integral

$$\int_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$$

where the surface is defined to be directed away from the z -axis.

(iv) (8 marks)

State Stokes' theorem and use it to calculate the integral in (iii) by an independent method.

4. Let ϕ be a scalar field. Use the divergence theorem to show that

$$\int_V \nabla \phi dV = \int_{\partial V} \phi \hat{\mathbf{n}} dS.$$

5. (i) A vector field \mathbf{F} is given by $\mathbf{F}(x, y, z) = (xy, yz, xz)$. Calculate $\nabla \cdot \mathbf{F}$.

(ii) The volume V of a tetrahedron is bounded by four triangular surfaces formed by the intersection of the planes $x = 0$, $y = 0$, $z = 0$ and $x + y + z = 1$. Sketch V .

(iii) Calculate the volume integral

$$\int_V \nabla \times \mathbf{F} \cdot dV$$

(iv) State the divergence theorem and use it to calculate the value of the integral in (iii) by an independent method.

6. If $\mathbf{f} = (0, x, 0)$ and $\mathbf{g} = (-y, 0, 0)$ show that, for any closed curve $C \in \mathbb{R}^3$

$$\int_C \mathbf{f} \cdot d\mathbf{r} = \int_C \mathbf{g} \cdot d\mathbf{r}$$

7. A surface S is defined as the intersection of the hemisphere of radius 2 given by the equation $(x+1)^2 + y^2 + z^2 = 4$ in $z \geq 0$ and the cylinder $x^2 + y^2 \leq 1$.

Using cylindrical polar coordinates centred on $z = 0$, write down a parametrisation $\mathbf{s}(r, \theta)$ of the surface S .