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1. Which of these are linear maps and why ?

(i) F(x) = (x3, x1, x2), (ii) F(x) = (x3x1, x1x2, x2x3), (iii) F(x) = (x3 + x1, x2 + x3)

In all cases, x = (x1, x2, x3). If the map is linear, write down the matrix A which defines the
map.

2. Let F : R2 → R
2 s.t. x 7→ (−x2, x1) and G : R2 → R

2 s.t x 7→ (x2, sin x1). Evaluate G ◦F and
F ◦G.

3. Let F : R2 → R
3 be given by

F(x) =
(

x2

1
x2, sin(x1 + x2), e

x1x2

)

(a) Compute the matrix F
′(x) of partial derivatives

∂Fi

∂xj

.

(b) Compute the directional derivative DvF(x), where v = (1, 2).

(c) Compare the result from (b), evaluated at x = x0 = (1, 1), to the vector F′(x0)v.

4. Let F : R2 → R
3 be given by F(x) = Ax, where

A =





1 2
2 1
1 0



 .

Let G : R3 → R
3 be given by

G(x) = (x1x2, x2x3, sin(x1x2x3)).

Let H = G ◦ F.

(a) Use the chain rule to calculate H
′(1, 1).

(b) Calculate H
′(1, 1) directly.

5. Consider the coupled nonlinear system of equations given by

x3 + ey = s, cosx+ xy = t

which we wish to be able to solve uniquely for (x, y) in terms of (s, t). Show this cannot be
done at (x, y) = (0, 0).
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6. Let F : R2 → R
2 be s.t. F(x) = (x2 + y2, x + y3/x) where x = (x, y). Show that close to the

point x = (1, 2),
F(x) ≈ (2x+ 4y − 5,−7x+ 2y − 8)

7. Show that the pair of equations

x2 + y2 − yu2 + v2 − 5 = 0, xy2 − yv/u− 3u = 0,

determine local functions u(x, y) and v(x, y) defined for (x, y) near (2, 1) such that u(2, 1) = 1
and v(2, 1) = −1. Compute ∂v/∂y at (x, y) = (2, 1).

8. The transformation from spherical to Cartesian co-ordinates is defined by the map

(x, y, z) = r(r, φ, θ) = (r sin φ cos θ, r sinφ sin θ, r cosφ).

(a) Calculate the derivative of the map r
′.

(b) Show that the Jacobian determinant is given by

Jr ≡
∂(x, y, z)

∂(r, φ, θ)
= r2 sinφ.

When can we solve for (r, φ, θ) in terms of (x, y, z)?

9. (Calculus 1 revision) Let f : R2 → R be given by

f(x) =







xy3

x2 + y6
, x 6= 0,

0, x = 0.

(a) Show that f is continuous for x 6= 0.

(b) Show that f is not continuous at the origin. Hint: consider the path x = y3.
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