

MATH20901 Multivariable Calculus: Problems 2¹

- Let δ_{ij} be the n -dimensional delta symbol. Compute $\delta_{ij}\delta_{ij}$, using the summation convention.
 - Define three matrices $A \in \mathbb{R}^{n \times p}$, $B \in \mathbb{R}^{q \times p}$, and $C \in \mathbb{R}^{q \times s}$. Express the i, j th component of the product AB^TC in terms of the components of A, B, C using Eisentein summation convention.
- The vectors \mathbf{e}_i , $1 \leq i \leq m$ form a non-normal orthogonal basis in \mathbb{R}^m (i.e. $|\mathbf{e}_i| \neq 1$). This means that for every \mathbf{x} in \mathbb{R}^m there exist c_j , $1 \leq j \leq m$ such that

$$\mathbf{x} = c_j \mathbf{e}_j.$$

Express c_j in terms of \mathbf{x} .

If the vectors \mathbf{e}_i , $1 \leq i \leq m$ form a non-orthogonal basis in \mathbb{R}^m , how would you compute the c_j now?

- Compute
 - the gradient of $f(\mathbf{r}) = \cos(xy) + \cos(yz)$, and verify that $\nabla \times \nabla f = 0$ in this case.
 - the divergence of $\mathbf{u}(\mathbf{r}) = (x \sin z, yz, \cos z)$,
 - the curl of $\mathbf{v}(\mathbf{r}) = (ayz, bzx, cxy)$, and verify that $\nabla \cdot \nabla \times \mathbf{v} = 0$ in this case.
- In each case of the following cases, use suffix notation. Compute
 - the gradient of $f(\mathbf{r}) = \mathbf{a} \cdot \mathbf{r}$, where $\mathbf{a} \in \mathbb{R}^3$ is a fixed vector.
 - the divergence of $\mathbf{v}(\mathbf{r}) = \nabla r^n$ where $r = |\mathbf{r}|$. For which value of n does the divergence vanish?
 - The curl of $\mathbf{v}(\mathbf{r}) = \boldsymbol{\omega} \times \mathbf{r}$, where $\boldsymbol{\omega} \in \mathbb{R}^3$ is a fixed vector.
- Let $f(r)$ be a smooth scalar-valued function of $r = |\mathbf{r}|$, and let $\mathbf{a} \in \mathbb{R}^3$ be a constant vector. Use suffix notation to calculate
 - $\nabla \times (\mathbf{r} \times \mathbf{a}f(r))$,
 - and (ii) $\nabla \cdot (\mathbf{a}f(r))$
 - Let \mathbf{u} be a vector field. Show, using suffix notation, that

$$(i) \nabla \times (\mathbf{r} \times \mathbf{a}f(r)), \quad \text{and (ii) } \nabla \cdot (\mathbf{a}f(r))$$

- Let \mathbf{u} be a vector field. Show, using suffix notation, that

$$\mathbf{u} \times (\nabla \times \mathbf{u}) = \frac{1}{2} \nabla(\mathbf{u} \cdot \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u}.$$

- Prove the following identities for scalar functions f, g and the vector function \mathbf{v} :

- $\nabla \cdot (f\mathbf{v}) = f\nabla \cdot \mathbf{v} + \nabla f \cdot \mathbf{v}$;
- $\nabla \cdot (f\nabla g) = f\Delta g + \nabla f \cdot \nabla g$;

¹©University of Bristol 2015

This material is copyright of the University of Bristol unless explicitly stated. It is provided exclusively for educational purposes at the University of Bristol and is to be downloaded or copied for your private study only.

$$(c) \quad \nabla \times (f\mathbf{v}) = f\nabla \times \mathbf{v} + \nabla f \times \mathbf{v}.$$

7. Without doing any calculations, how do you know the following result is false ?

$$\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{u} \cdot \nabla \times \mathbf{v} + \mathbf{v} \cdot \nabla \times \mathbf{u}.$$

Find a corrected version of this result.

8. Show that, for vector fields $\mathbf{u}(\mathbf{r}), \mathbf{v}(\mathbf{r})$ both in \mathbb{R}^3

$$\nabla \times (\mathbf{u} \times \mathbf{v}) = (\nabla \cdot \mathbf{v})\mathbf{u} - (\nabla \cdot \mathbf{u})\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{u} - (\mathbf{u} \cdot \nabla)\mathbf{v}.$$

9. (a) The force per unit volume of gravity on a particle of density ρ is given by

$$\mathbf{F} = -\rho g \hat{\mathbf{z}}$$

where g is gravitational acceleration. Find a ϕ such that $\mathbf{F} = \nabla\phi$.

(b) Euler's equations governing the motion of a so-called 'ideal fluid' are given by

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla p, \quad \text{with} \quad \nabla \cdot \mathbf{u} = 0$$

where p is a scalar (pressure) function, t is time and \mathbf{u} is a vector function (the fluid velocity).

Take the curl of Euler's equation, using the results of Q5(b) and Q8 to derive the following equation for the *vorticity* $\boldsymbol{\omega} = \nabla \times \mathbf{u}$

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \nabla)\boldsymbol{\omega} = (\boldsymbol{\omega} \cdot \nabla)\mathbf{u}.$$

(c) Deduce that if \mathbf{u} is two-dimensional (e.g. no component in the $\hat{\mathbf{z}}$ direction) then $\boldsymbol{\omega}$ is constant.

10. Navier's equation governs the motion of a linear isotropic elastic solid and is given by

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = (\lambda + \mu) \nabla(\nabla \cdot \mathbf{u}) + \mu \Delta \mathbf{u}$$

where ρ is the density of the elastic solid, λ and μ are material constants, t is time and \mathbf{u} is the (small) displacement of the solid as a function of space and time.

Assuming space and time derivatives are interchangeable, apply the divergence and curl operators to Navier's equation to show that $\phi = \nabla \cdot \mathbf{u}$ and $\mathbf{H} = \nabla \times \mathbf{u}$ satisfy

$$\frac{\partial^2 \phi}{\partial t^2} = c_1^2 \Delta \phi, \quad \text{and} \quad \frac{\partial^2 \mathbf{H}}{\partial t^2} = c_2^2 \Delta \mathbf{H},$$

where c_1 and c_2 are to be found.

[Hint: You will need to use results from lectures, namely: (i) $\Delta \mathbf{u} = \nabla(\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u})$; (ii) $\nabla \times \nabla f = 0$; (iii) $\nabla \cdot (\nabla \times \mathbf{v}) = 0$ for any f, \mathbf{v} .]