MATH20901 Multivariable Calculus: Problems 2

1. (a) Let §;; be the n-dimensional delta symbol. Compute 6;;0;;, using the summation conven-
tion.

(b) Define three matrices A € R"*?, B € R?*? and C' € R?**. Express the ¢, jth component
of the product ABTC in terms of the components of A, B, C' using Eisntein summation
convention.

2. The vectors e;, 1 < i < m form a non-normal orthogonal basis in R™ (i.e. |e;| # 1). This
means that for every x in R™ there exist ¢;, 1 < j < m such that

X = cjej.

Express ¢; in terms of x.

If the vectors e;, 1 < 7 < m form a non-orthogonal basis in R™, how would you compute the
c¢; now ?

3. Compute
(a) the gradient of f(r) = cos(xy) + cos(yz), and verify that V x V f = 0 in this case.
(b) the divergence of u(r) = (zsin z, yz, cos z),

(c) the curl of v(r) = (ayz, bzz, cry), and verify that V - V x v = 0 in this case.
4. In each case of the following cases, use suffix notation. Compute

(a) the gradient of f(r) = a-r, where a € R? is a fixed vector.

(b) the divergence of v(r) = Vr"™ where r = |r|. For which value of n does the divergence
vanish 7

(c) The curl of v(r) = w x r, where w € R3? is a fixed vector.

5. (a) Let f(r) be a smooth scalar-valued function of r = |r|, and let a € R? be a constant
vector. Use suffix notation to calculate

(i) V x (r x af(r)), and (ii) V - (af(r))
(b) Let u be a vector field. Show, using suffix notation, that

ux(qu):%V(u-u)—(u-V)u.

6. Prove the following identities for scalar functions f, g and the vector function v:

(a) V- (fv)=fV v+ V[ v
(b) V- (fVg)=fAg+ V[ Vg
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() VX (fv)=fVxv+Vfxv.
7. Without doing any calculations, how do you know the following result is false ?
Vi(uxv)=u-Vxv+v-Vxu
Find a corrected version of this result.

8. Show that, for vector fields u(r), v(r) both in R?
Vx(uxv)=(V-v)u—(V-u)v+ (v-V)u—(u-V)v.

9. (a) The force per unit volume of gravity on a particle of density p is given by
F = —pgz

where ¢ is gravitational acceleration. Find a ¢ such that F = V¢.

(b) Euler’s equations governing the motion of a so-called ‘ideal fluid” are given by

1
E_F(u.v)u:—;Vp, with V.-u=0

where p is a scalar (pressure) function, ¢ is time and u is a vector function (the fluid
velocity).

Take the curl of Euler’s equation, using the results of Q5(b) and Q8 to derive the following
equation for the vorticity w = V x u

Ow
E+(U~V)w: (w- V)u.

(¢) Deduce that if u is two-dimensional (e.g. no component in the z direction) then w is
constant.

10. Navier’s equation governs the motion of a linear isotropic elastic solid and is given by
2u
where p is the density of the elastic solid, A and p are material constants, ¢ is time and u is

the (small) displacement of the solid as a function of space and time.

Assuming space and time derivatives are interchangeable, apply the divergence and curl oper-
ators to Navier’s equation to show that ¢ = V -u and H = V x u satisfy

0
o2

0*H
ot?

= 2N, and = c2AH,

where ¢; and ¢y are to be found.

[Hint: You will need to use results from lectures, namely: (i) Au=V(V -u) -V x (V x u);
(i) Vx Vf=0; (ili) V- (V xv) =0 for any f, v.]



