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1. (a) Let δij be the n-dimensional delta symbol. Compute δijδij , using the summation conven-
tion.

(b) Define three matrices A ∈ R
n×p, B ∈ R

q×p, and C ∈ R
q×s. Express the i, jth component

of the product ABTC in terms of the components of A,B,C using Eisntein summation
convention.

2. The vectors ei, 1 ≤ i ≤ m form a non-normal orthogonal basis in R
m (i.e. |ei| 6= 1). This

means that for every x in R
m there exist cj , 1 ≤ j ≤ m such that

x = cjej .

Express cj in terms of x.

If the vectors ei, 1 ≤ i ≤ m form a non-orthogonal basis in R
m, how would you compute the

cj now ?

3. Compute

(a) the gradient of f(r) = cos(xy) + cos(yz), and verify that ∇×∇f = 0 in this case.

(b) the divergence of u(r) = (x sin z, yz, cos z),

(c) the curl of v(r) = (ayz, bzx, cxy), and verify that ∇ ·∇× v = 0 in this case.

4. In each case of the following cases, use suffix notation. Compute

(a) the gradient of f(r) = a · r, where a ∈ R
3 is a fixed vector.

(b) the divergence of v(r) = ∇rn where r = |r|. For which value of n does the divergence
vanish ?

(c) The curl of v(r) = ω × r, where ω ∈ R
3 is a fixed vector.

5. (a) Let f(r) be a smooth scalar-valued function of r = |r|, and let a ∈ R
3 be a constant

vector. Use suffix notation to calculate

(i) ∇× (r× af(r)) , and (ii) ∇ · (af(r))

(b) Let u be a vector field. Show, using suffix notation, that

u× (∇× u) =
1

2
∇(u · u)− (u ·∇)u.

6. Prove the following identities for scalar functions f, g and the vector function v:

(a) ∇ · (fv) = f∇ · v +∇f · v;

(b) ∇ · (f∇g) = f∆g +∇f ·∇g;
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(c) ∇× (fv) = f∇× v +∇f × v.

7. Without doing any calculations, how do you know the following result is false ?

∇ · (u× v) = u ·∇× v + v ·∇× u.

Find a corrected version of this result.

8. Show that, for vector fields u(r), v(r) both in R
3

∇× (u× v) = (∇ · v)u− (∇ · u)v + (v ·∇)u− (u ·∇)v.

9. (a) The force per unit volume of gravity on a particle of density ρ is given by

F = −ρgẑ

where g is gravitational acceleration. Find a φ such that F = ∇φ.

(b) Euler’s equations governing the motion of a so-called ‘ideal fluid’ are given by

∂u

∂t
+ (u ·∇)u = −

1

ρ
∇p, with ∇ · u = 0

where p is a scalar (pressure) function, t is time and u is a vector function (the fluid
velocity).

Take the curl of Euler’s equation, using the results of Q5(b) and Q8 to derive the following
equation for the vorticity ω = ∇× u

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u.

(c) Deduce that if u is two-dimensional (e.g. no component in the ẑ direction) then ω is
constant.

10. Navier’s equation governs the motion of a linear isotropic elastic solid and is given by

ρ
∂2
u

∂t2
= (λ+ µ)∇(∇ · u) + µ∆u

where ρ is the density of the elastic solid, λ and µ are material constants, t is time and u is
the (small) displacement of the solid as a function of space and time.

Assuming space and time derivatives are interchangeable, apply the divergence and curl oper-
ators to Navier’s equation to show that φ = ∇ · u and H = ∇× u satisfy

∂2φ

∂t2
= c2

1
∆φ, and

∂2
H

∂t2
= c2

2
∆H,

where c1 and c2 are to be found.

[Hint: You will need to use results from lectures, namely: (i) ∆u = ∇(∇ · u)−∇× (∇× u);
(ii) ∇×∇f = 0; (iii) ∇ · (∇× v) = 0 for any f , v.]
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