

MATH20901 Multivariable Calculus: Problems 4¹

1. The length of a curve C is given by $\int_C |d\mathbf{r}|$. A cycloid is the path traced out in space by, say, a nail in a tyre on a wheel of radius a . The path is given by $\mathbf{p}(t) = a(t - \sin t, 1 - \cos t, 0)$ with $0 < t < 2\pi$ for one revolution. Find the distance the nail travels during one revolution of the wheel.
2. Let $\mathbf{v}(\mathbf{r}) = (x, xy, xyz)$ and let the curve C be parametrised by the path

$$\mathbf{p}(t) = \left(\sin\left(\frac{\pi}{2}t\right), \cos\left(\frac{\pi}{2}t\right), t \right), \quad 0 \leq t \leq 1.$$

Evaluate the line integral $\int_C \mathbf{v} \cdot d\mathbf{r}$.

3. The surface area of an object with surface S is given by $\int_S dS$. Use a transformation of coordinates $x = ra \cos \theta$, $y = rb \sin \theta$ to show that the area of an ellipse with semi-major and minor axes a and b is πab .
4. Calculate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ when $\mathbf{F} = (-x^2y, xy^2, 0)$ and C is a square in the (x, y) -plane with vertices at $(0, 0)$, $(l, 0)$, (l, l) , $(0, l)$ which is oriented anticlockwise.
5. Let $\mathbf{F}(\mathbf{r}) = (x^2z, xy^2, z^2)$ and define a closed curve C in \mathbb{R}^3 comprised of three straight line segments C_1 , C_2 and C_3 formed by the intersection of the plane $x + y + z = 1$ with the planes $y = 0$, $z = 0$ and $x = 0$ (respectively).
 - (a) First you should sketch the curve $C = C_1 \cup C_2 \cup C_3$ in the (x, y, z) -space.
 - (b) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, by considering each line segment separately. *[Hint: be careful to make sure the orientation of each segment of C is aligned with the other segments.]*
 - (c) Calculate $\int_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$ over an appropriately-defined surface with boundary $\partial S = C$.
 - (d) If, instead, $\mathbf{F} = (yz, xz, xy)$ explain how you could have calculated parts (b) and (c) instantly.
6. Let $\mathbf{F}(\mathbf{r}) = (-y^2, x, z^2)$ and define a curve C in \mathbb{R}^3 to be the intersection of the cylinder $x^2 + y^2 = 1$ and the plane $y + z = 2$.
 - (a) Compute

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

¹©University of Bristol 2015

This material is copyright of the University of Bristol unless explicitly stated. It is provided exclusively for educational purposes at the University of Bristol and is to be downloaded or copied for your private study only.

(b) Compute

$$\int_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$$

where S is a surface of your choice with boundary ∂S coinciding with the curve C . Hence show that Stokes' theorem is satisfied.

7. In this question you are asked to prove Green's theorem on a rectangle directly. Let $\mathbf{v}(\mathbf{r}) = f(x, y)\hat{\mathbf{x}} + g(x, y)\hat{\mathbf{y}}$ be a vector field that lies in the (x, y) -plane and depends only on x and y . Without using Stokes' theorem, show that

$$\int_D \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy = \int_{\partial D} f dx + g dy,$$

where $D = \{(x, y) \mid a < x < b, c < y < d\}$ and ∂D is its boundary.

8. Show that for any two scalar fields $f(\mathbf{r}), g(\mathbf{r})$ around a closed curve C

$$\int_C (f \nabla g + g \nabla f) \cdot d\mathbf{r} = 0$$