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1. The length of a curve C is given by

∫

C

|dr|. A cycloid is the path traced out in space by, say,

a nail in a tyre on a wheel of radius a. The path is given by p(t) = a(t− sin t, 1− cos t, 0) with
0 < t < 2π for one revolution. Find the distance the nail travels during one revolution of the
wheel.

2. Let v(r) = (x, xy, xyz) and let the curve C be parametrised by the path

p(t) =
(

sin
(π

2
t
)

, cos
(π

2
t
)

, t
)

, 0 ≤ t ≤ 1.

Evaluate the line integral

∫

C

v · dr.

3. The surface area of an object with surface S is given by

∫

S

dS. Use a transformation of

coordinates x = ra cos θ, y = rb sin θ to show that the area of an ellipse with semi-major and
minor axes a and b is πab.

4. Calculate the integral

∫

C

F · dr when F = (−x2y, xy2, 0) and C is a square in the (x, y)−plane

with vertices at (0, 0), (l, 0), (l, l), (0, l) which is oriented anticlockwise.

5. Let F(r) = (x2z, xy2, z2) and define a closed curve C in R
3 comprised of three straight line

segments C1, C2 and C3 formed by the intersection of the plane x+ y + z = 1 with the planes
y = 0, z = 0 and x = 0 (respectively).

(a) First you should sketch the curve C = C1 ∪ C2 ∪ C3 in the (x, y, z)-space.

(b) Calculate

∫

C

F · dr, by considering each line segment separately. [Hint: be careful to make

sure the orientation of each segment of C is aligned with the other segments.]

(c) Calculate

∫

S

∇× F · dS over an appropriately-defined surface with boundary ∂S = C.

(d) If, instead, F = (yz, xz, xy) explain how you could have calculated parts (b) and (c)
instantly.

6. Let F(r) = (−y2, x, z2) and define a curve C in R
3 to be the intersection of the cylinder

x2 + y2 = 1 and the plane y + z = 2.

(a) Compute
∫

C

F · dr
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(b) Compute
∫

S

∇× F · dS

where S is a surface of your choice with boundary ∂S coinciding with the curve C. Hence
show that Stokes’ theorem is satisfied.

7. In this question you are asked to prove Green’s theorem on a rectangle directly. Let v(r) =
f(x, y)x̂+ g(x, y)ŷ be a vector field that lies in the (x, y)-plane and depends only on x and y.
Without using Stokes’ theorem, show that

∫

D

(

∂g

∂x
−

∂f

∂y

)

dxdy =

∫

∂D

f dx+ g dy,

where D = {(x, y) | a < x < b, c < y < d} and ∂D is its boundary.

8. Show that for any two scalar fields f(r), g(r) around a closed curve C

∫

C

(f∇g + g∇f) · dr = 0
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