MATH20901 Multivariable Calculus: Problems 5

1. Verify Stokes’ theorem for the (hemispheric) surface |r| = 3, 2 > 0 and the vector field v(r) =
(y, —x,0).
2. If there exists a scalar function f(z,y) such that a vector field F = V f show, using Green’s

theorem in the plane, that | F - dr =0 where C' is a closed curve.
c

3. Deduce the value of integral in Problem Sheet 4 Q4 when the square is rotated in the (z,y)-
plane by an arbitrary angle about the vertex at (0,0).
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when F = (z,7,2%) and S is the conical surface formed by z = /22 +y2 for 0 < z < 1;
the unit normal to the surface is directed away from the axis of the cone.

(b) Find
/ V- -FdV
v

where V is the volume inside the cone defined above.

4. (a) Compute

(c) Without doing any further computations, deduce

/ F - dS.
x2+y?<1,2=1

Check your answer.

5. Evaluate / F - dS, where F(z,y, 2) = X+ yy — 2z and V is the unit cube in the first octant.

oV
Perform the calculation directly and check by using the divergence theorem.

6. On Problem Sheet 2, Q4(b) it was shown that A (1) = 0 for r # 0. Let V be a sphere of
arbitrary non-zero radius centred on the origin and S its enclosing surface. Use the divergence

theorem to show that .
/ A <—) dV = —4m.
v r

7. Guass’ Law relates the flux of an electric field E(r) through a surface S to the density of charges

in V', within S, p(r) via
/E~dS:47T/pdV:Q
s 1%

How do you explain this ?

where @ is the net charge.
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8.

10.

(a) Show that (one of Maxwell’s equations)
V - E =4np, at all points in space

(b) Compute @ when E = (z,y, z) and V is the cuboid with vertices (+1,£1,+1). (Hint: use
the easiest method you can).

We are all happy with the idea that volume of a region V' C R3 can be defined as / dx dydz.

1%
Show that an alternative way of calculating it is

1
—/r-ﬁdS
3Js

where S is the surface enclosing V' and n the unit outward normal to S.

Confirm your answer by applying the new formula directly to a sphere of radius a.

. In a style similar to Q8, can you think of a way of computing surface areas of 3D objects using

integrals over the volume ?

Use Green’s identity Identity to show, for two scalar fields u(r), v(r) that, if Au = 0 in a
volume V' bounded by a surface S, upon which v = 0,

/Vu-VvdV:O
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