

UNIVERSITY OF BRISTOL

Examination for the Degree of B.Sc. and M.Sci. (Level 5)

MULTIVARIABLE CALCULUS
MATH 20901
(Paper Code MATH-20901)

April 2013, 1 hours 30 minutes

*This paper contains **three** questions. A candidate's best **TWO** answers used for assessment.*

*Calculators are **not** permitted in this examination.*

Do not turn over until instructed.

1. (Total marks: 25)

(a) i. (3 marks) Let $\mathbf{F} : \mathbb{R}^m \rightarrow \mathbb{R}^n$. Define what it means that \mathbf{F} is differentiable at a point $\mathbf{x} \in \mathbb{R}^m$.

ii. (3 marks) Let $\mathbf{F} : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be differentiable at $\mathbf{x} \in \mathbb{R}^m$, and let $a \in \mathbb{R}$. Prove that $a\mathbf{F}$ is differentiable at \mathbf{x} .

iii. (3 marks) Give an example of two functions $\mathbf{F}, \mathbf{G} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that $\mathbf{F} \neq \mathbf{G}$, but $\mathbf{F}'(0) = \mathbf{G}'(0)$.

(b) (4 marks) Consider the transformation $(x, y) = (r \cos \theta, r \sin \theta)$. Show that the Jacobian determinant is given by

$$\frac{\partial(x, y)}{\partial(r, \theta)} = r.$$

When can we solve for (r, θ) in terms of (x, y) ?

(c) (12 marks) Show that the pair of equations

$$x^2 - y^2 - u^3 + v^2 + 4 = 0, \quad 2xy + y^2 - 2u^2 + 3v^4 + 8 = 0$$

determine local functions $x(u, v)$ and $y(u, v)$ defined for (u, v) near $u = 2$ and $v = 1$ such that $x(2, 1) = 2$ and $y(2, 1) = -1$. Compute $\frac{\partial u}{\partial x}$ at $(2, 1)$.

Continued...

2. (Total marks: 25)

(a) (4 marks) Let $\mathbf{v}(x, y, z)$ be the vector field on \mathbb{R}^3 given by

$$\mathbf{u}(x, y, z) = (x \sin z, yz, \cos z).$$

Compute $\nabla \cdot \mathbf{u}$ and $\nabla \times \mathbf{u}$.

(b) Cylindrical coordinates are defined by

$$\mathbf{r}(r, \theta, z) = (r \cos \theta, r \sin \theta, z).$$

- i. (3 marks) Calculate the basis vectors $\hat{\mathbf{r}}$, $\hat{\theta}$, and $\hat{\mathbf{z}}$.
- ii. (1 mark) Calculate the scale factors h_r , h_θ , and h_z .
- iii. (7 marks) Calculate $(\mathbf{u} \cdot \nabla) \mathbf{u}$ in cylindrical coordinates, where $\mathbf{u} = u_r \hat{\mathbf{r}} + u_\theta \hat{\theta} + u_z \hat{\mathbf{z}}$.

(c) i. (6 marks) Let $f(r)$ be a smooth scalar-valued function of $r = |\mathbf{r}|$, and let $\mathbf{a} \in \mathbb{R}^3$ be a constant vector. Calculate

$$\nabla \times (\mathbf{r} \times \mathbf{a} f(r)).$$

ii. (4 marks) Let \mathbf{u} be a vector field in $C(\mathbb{R}^3, \mathbb{R}^3)$. Show that

$$\mathbf{u} \times (\nabla \times \mathbf{u}) = \frac{1}{2} \nabla (\mathbf{u} \cdot \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u}.$$

Continued...

3. (Total marks: 25)

(a) (4 marks) Let $\mathbf{v}(x, y) = (y^2, -xy)$ be a vector field on \mathbb{R}^2 , and let C be the part of the circle $x^2 + y^2 = 1$ that starts at $(1, 0)$ and ends at $(0, 1)$, oriented clockwise. Compute $\int_C \mathbf{v} \cdot d\mathbf{r}$.

(b) (4 marks) Let S be the surface of the unit sphere, and let $\mathbf{F} = F_r \hat{\mathbf{r}}$ be a vector field, where $\hat{\mathbf{r}} = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$ is the unit vector pointing radially outward from the sphere, where $0 \leq \phi \leq \pi$, and $0 \leq \theta \leq 2\pi$. Show that

$$\int_S \mathbf{F} \cdot d\mathbf{S} = \int_0^{2\pi} \int_0^\pi F_r \sin \phi d\phi d\theta.$$

(c) Let S be the surface in \mathbb{R}^3 given by the cone $z = (x^2 + y^2)^{1/2}$, $x^2 + y^2 \leq 1$. Let $\mathbf{u}(x, y, z)$ be the vector field given by

$$\mathbf{v}(x, y, z) = (z^2, z, y^2).$$

i. (8 marks) Without using Stokes' theorem, compute $\int_S (\nabla \times \mathbf{v}) \cdot d\mathbf{S}$, where $d\mathbf{S}$ is oriented inward toward the z -axis.

ii. (5 marks) Recalculate the surface integral from (i) by computing the line integral along an appropriate path.

(d) (4 marks) Let V be as in Gauss' theorem, and $f, g \in C^2(\mathbb{R}^3, \mathbb{R})$. Prove that

$$\int_{\partial V} f \nabla g \cdot \mathbf{n} dS = \int_V (f \Delta g + \nabla f \cdot \nabla g) dV.$$

End of examination.