

EXAMINATION SOLUTIONS

Multivariable Calculus

January 2014

1. (25 marks.)

(a) i. (3 marks) Let $\mathbf{h} \in \mathbb{R}^m$ and

$$\mathbf{r} = \mathbf{F}(\mathbf{x} + \mathbf{h}) - \mathbf{F}(\mathbf{x}) - A\mathbf{h}$$

There exists an $A \in \mathbb{R}^{n \times m}$ such that

$$\lim_{\mathbf{h} \rightarrow 0} \frac{\|\mathbf{r}\|}{\|\mathbf{h}\|} = 0.$$

ii. (5 marks) According to the chain rule,

$$\mathbf{H}'(-1, 1) = \mathbf{f}'(\mathbf{g}(-1, 1)) \circ \mathbf{g}'(-1, 1).$$

Now $\mathbf{g}(-1, 1) = (-1, 0, 2) \equiv (u, v, w)$. Thus

$$\mathbf{f}' = \begin{pmatrix} w & 2v & u \\ 2u & 0 & 2w \\ 2uv & u^2 & -3w^2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 \\ -2 & 0 & 4 \\ 0 & 1 & -12 \end{pmatrix},$$

and

$$\mathbf{g}' = \begin{pmatrix} y^3 & 3xy^2 \\ 2x & -2y \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ -2 & -2 \\ 3 & 5 \end{pmatrix},$$

so that

$$\mathbf{H}' = \begin{pmatrix} 2 & 0 & -1 \\ -2 & 0 & 4 \\ 0 & 1 & -12 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -2 & -2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} -1 & -11 \\ 10 & 26 \\ -38 & -62 \end{pmatrix}.$$

(b) (4 marks) We use the chain rule to compute

$$\frac{\partial z}{\partial x} = \left(\frac{1}{x-y} - \frac{x+y}{(x-y)^2} \right) f' = -2f' \frac{y}{(x-y)^2}$$

and

$$\frac{\partial z}{\partial y} = \left(\frac{1}{x-y} + \frac{x+y}{(x-y)^2} \right) f' = 2f' \frac{x}{(x-y)^2}.$$

But this means that

$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2 \left(-\frac{xy}{(x-y)^2} + \frac{xy}{(x-y)^2} \right) f' = 0,$$

as claimed.

(c) i. (5 marks) If $\mathbf{x} \neq 0$, the denominator is nonzero, and we can use the chain rule to find

$$\frac{\partial f}{\partial x_1} = \frac{x_2}{(x_1^2 + x_2^2)^{1/2}} - \frac{x_1^2 x_2}{(x_1^2 + x_2^2)^{1/2}} = \frac{x_2^3}{(x_1^2 + x_2^2)^{3/2}},$$

and

$$\frac{\partial f}{\partial x_2} = \frac{x_1^3}{(x_1^2 + x_2^2)^{3/2}}$$

by symmetry. For the case $\mathbf{x} = 0$, note that $f(t, 0) = 0$ for all $t \in \mathbb{R}$. Thus

$$\lim_{t \rightarrow 0} \frac{f(t, 0) - f(0, 0)}{t} = 0,$$

so that $\frac{\partial f}{\partial x_1} = 0$ at the origin. By symmetry, $\frac{\partial f}{\partial x_2} = 0$.

ii. (3 marks) Consider the path $(x_1, x_2) = (0, t)$ for $t \rightarrow 0$. According to i.,

$$\frac{\partial f}{\partial x_1} = \frac{t^3}{t^3} = 1,$$

which does not converge to 0 as $t \rightarrow 0$. Thus $\frac{\partial f}{\partial x_1}$ is not continuous at the origin, and the same is true for $\frac{\partial f}{\partial x_2}$ by symmetry.

iii. (5 marks) Assume that f were differentiable at the origin. Then

$$f' \mathbf{e}_1 = \frac{\partial f}{\partial x_1} = 0$$

and

$$f' \mathbf{e}_2 = \frac{\partial f}{\partial x_2} = 0,$$

and so $f' = (0, 0)$. Now by direct calculation, for $\mathbf{v} = (1, 1)$

$$D_{\mathbf{v}} f = \lim_{t \rightarrow 0} \frac{f(t, t)}{t} = \frac{t^2}{\sqrt{2}tt} = \frac{1}{\sqrt{2}}.$$

But on the other hand, since f is differentiable,

$$D_{\mathbf{v}} f = A(\mathbf{e}_1 + \mathbf{e}_2) = 0,$$

which is a contradiction.

Continued...

2. (25 marks)

(a) i. (1 mark) $\delta_{jj}^2 = 1 + 1 + 1 = 3$,
ii. (1 mark) $\epsilon_{iijj} = -\epsilon_{iijj}$, thus $\epsilon_{iijj} = 0$.
iii. (3 marks)

$$\delta_{ij}\delta_{jk}\epsilon_{ilm}\epsilon_{lkn} = \epsilon_{jlm}\epsilon_{ljn} = -(\delta_{jj}\delta_{mn} - \delta_{jn}\delta_{mj}) = -(3\delta_{mn} - \delta_{mn}) = -2\delta_{mn}.$$

(b) i. (3 marks)

$$[\nabla \times (\mathbf{a} \times \mathbf{r})]_i = \epsilon_{ijk} \partial_j \epsilon_{klm} a_l r_m = (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}) a_l \partial_j r_m = (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}) a_l \delta_{jm} = (\delta_{il}\delta_{jj} - \delta_{ij}\delta_{jl}) a_l = 3a_i - a_j \delta_{ij} = 2a_i.$$

Thus

$$\nabla \times (\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}.$$

ii. (3 marks)

$$\nabla \cdot \left(\frac{\mathbf{r}}{r^2} \right) = \partial_i \left(\frac{r_i}{r^2} \right) = \frac{\delta_{ii}}{r^2} - 2 \frac{r_i r_i}{r^4} = \frac{3}{r^2} - 2 \frac{r^2}{r^4} = \frac{1}{r^2}.$$

(c) i. (4 marks)

$$\frac{\partial \mathbf{r}}{\partial r} = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi) = h_r \hat{\mathbf{r}};$$

$$h_r = |(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)| = 1.$$

$$\frac{\partial \mathbf{r}}{\partial \phi} = r(\cos \phi \cos \theta, \cos \phi \sin \theta, -\sin \phi) = h_\phi \hat{\phi};$$

$$h_\phi = |r(\cos \phi \cos \theta, \cos \phi \sin \theta, -\sin \phi)| = r.$$

$$\frac{\partial \mathbf{r}}{\partial \theta} = r(-\sin \phi \sin \theta, \sin \phi \cos \theta, 0) = h_\theta \hat{\theta};$$

$$h_\theta = |r(-\sin \phi \sin \theta, \sin \phi \cos \theta, 0)| = r \sin \phi.$$

This means that

$$\begin{aligned} \hat{\mathbf{r}} &= (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi), \\ \hat{\phi} &= (\cos \phi \cos \theta, \cos \phi \sin \theta, -\sin \phi), \\ \hat{\theta} &= (-\sin \theta, \cos \theta, 0). \end{aligned}$$

ii. (5 marks)

$$\nabla = \hat{\mathbf{r}} \frac{\partial}{\partial r} + \frac{\hat{\phi}}{r} \frac{\partial}{\partial \phi} + \frac{\hat{\theta}}{r \sin \phi} \frac{\partial}{\partial \theta},$$

and $\mathbf{u} = \sin \theta \hat{\mathbf{r}}$, so that

$$\nabla \cdot \mathbf{u} = \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} \frac{\partial \sin \phi}{\partial r} + \sin \theta \frac{\hat{\phi}}{r} \cdot \frac{\partial \hat{\mathbf{r}}}{\partial \phi} + \sin \theta \frac{\hat{\theta}}{r \sin \phi} \cdot \frac{\partial \hat{\mathbf{r}}}{\partial \theta}.$$

Now

$$\frac{\partial \hat{\mathbf{r}}}{\partial \phi} = (\cos \phi \cos \theta, \cos \phi \sin \theta, -\sin \phi) = \hat{\boldsymbol{\phi}}, \quad \frac{\partial \hat{\mathbf{r}}}{\partial \theta} = (-\sin \phi \sin \theta, \sin \phi \cos \theta, 0) = \sin \phi \hat{\boldsymbol{\theta}},$$

and so

$$\nabla \cdot \mathbf{u} = \sin \theta \frac{\hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}}}{r} + \sin \phi \sin \theta \frac{\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}}{r \sin \phi} = 2 \frac{\sin \theta}{r}.$$

(d) (5 marks)

$$\begin{aligned} \nabla \cdot (\mathbf{u} \times \mathbf{v}) &= \epsilon_{ijk} \partial_i (u_j v_k) = \epsilon_{ijk} (\partial_i u_j) v_k + \epsilon_{ijk} u_j \partial_i v_k = \\ &v_k \epsilon_{kij} (\partial_i u_j) - u_j \epsilon_{jik} u_j \partial_i v_k = \mathbf{v} \cdot (\nabla \times \mathbf{u}) - \mathbf{u} \cdot (\nabla \times \mathbf{v}). \end{aligned}$$

Continued...

3. (25 marks)

(a) (5 marks) From the definition of the line integral, we have that

$$\int_C \nabla f \cdot d\mathbf{r} = \int_a^b \nabla f(\mathbf{p}(s)) \cdot \frac{d\mathbf{p}}{ds} ds.$$

But from the Chain Rule it follows that

$$\frac{d}{ds} f(\mathbf{p}(s)) = \frac{\partial f}{\partial r_i}(\mathbf{p}(s)) \frac{dp_i}{ds}(s).$$

Therefore,

$$\int_C \nabla f \cdot d\mathbf{r} = \int_a^b \frac{d}{ds} f(\mathbf{p}(s)) ds = f(\mathbf{p}(b)) - f(\mathbf{p}(a)),$$

where the last equality follows from the Fundamental Theorem of Calculus.

(b) i. (4 marks) The equator is along $\phi = \pi/2$, and thus

$$\mathbf{p}(\theta) = R(\cos \theta, \sin \theta, 0),$$

where θ runs from 2π to 0 (going west). Along the path,

$$\mathbf{f} = R(\sin \theta, -\cos \theta, 0),$$

and

$$\frac{\partial \mathbf{p}}{\partial \theta} = R(-\sin \theta, \cos \theta, 0).$$

Thus

$$\int_C \mathbf{f} \cdot d\mathbf{r} = \int_{2\pi}^0 \mathbf{f} \cdot \frac{\partial \mathbf{p}}{\partial \theta} d\theta = -R^2 \int_0^{2\pi} (-\sin^2 \theta - \cos^2 \theta) d\theta = 2\pi R^2.$$

ii. (5 marks) Stokes' theorem reads

$$\int_C \mathbf{f} \cdot d\mathbf{r} = \int_S \nabla \times \mathbf{f} \cdot d\mathbf{S}.$$

Using the right-hand rule, the orientation of S (the northern hemisphere) should have the normal pointing inward. Thus

$$\begin{aligned} \mathbf{N} = \frac{\partial \mathbf{s}}{\partial \theta} \times \frac{\partial \mathbf{s}}{\partial \phi} &= R^2(-\sin \phi \sin \theta, \sin \phi \cos \theta, 0) \times (\cos \phi \cos \theta, \cos \phi \sin \theta, -\sin \phi) = \\ &-R^2 \sin \phi(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi), \end{aligned}$$

and

$$\nabla \times \mathbf{f} = (0, 0, -2).$$

Thus

$$\int_S \nabla \times \mathbf{f} \cdot d\mathbf{S} = 2R^2 \int_0^{\pi/2} \int_0^{2\pi} \sin \phi \cos \phi d\theta d\phi = 2\pi R^2 \int_0^{\pi/2} \sin 2\phi d\phi = \pi R^2(1 - \cos \pi) = 2\pi R^2,$$

as in i.

iii. (1 mark) The orientation is the opposite of ii., i.e. facing outward.
 (c) i. (5 marks) Put

$$\mathbf{h} = f\mathbf{\nabla}g - g\mathbf{\nabla}f$$

in Gauss' theorem,

$$\int_V \mathbf{\nabla} \cdot \mathbf{h} dV = \int_{\partial V} \mathbf{h} \cdot \mathbf{n} dS.$$

Now

$$\mathbf{\nabla} (f\mathbf{\nabla}g - g\mathbf{\nabla}f) = \mathbf{\nabla}f \cdot \mathbf{\nabla}g + f\Delta g - \mathbf{\nabla}g \cdot \mathbf{\nabla}f - g\Delta f = f\Delta g - g\Delta f,$$

and the result follows.

ii. (5 marks) According to Gauss' theorem,

$$\int_V \mathbf{\nabla} \cdot \mathbf{v} dV = \int_{\partial V} \mathbf{v} \cdot \mathbf{n} dS.$$

Put $\mathbf{v} = \mathbf{a}\phi$, where \mathbf{a} is an arbitrary, constant vector. Then $\mathbf{\nabla} \cdot \mathbf{v} = \mathbf{a} \cdot \mathbf{\nabla}\phi$, so that

$$\mathbf{a} \cdot \int_V \mathbf{\nabla}\phi dV = \int_V \mathbf{\nabla} \cdot \mathbf{v} dV = \int_{\partial V} \mathbf{v} \cdot \mathbf{n} dS = \mathbf{a} \cdot \int_{\partial V} \phi \mathbf{n} dS.$$

But since this is true for any \mathbf{a} , the statement follows.

End of solutions.