
EXAMINATION SOLUTIONS

Multivariable Calculus
January 2014

1. (25 marks.)

(a) i. (3 marks) Let h ∈ Rm and

r = F(x + h)− F(x)− Ah

There exists an A ∈ Rn×m such that

lim
h→0

||r||
||h||

= 0.

ii. (5 marks) According to the chain rule,

H′(−1, 1) = f ′(g(−1, 1)) ◦ g′(−1, 1).

Now g(−1, 1) = (−1, 0, 2) ≡ (u, v, w). Thus

f ′ =

 w 2v u
2u 0 2w
2uv u2 −3w2

 =

 2 0 −1
−2 0 4
0 1 −12

 ,

and

g′ =

y3 3xy2

2x −2y
3 5

 =

 1 −3
−2 −2
3 5

 ,

so that

H′ =

 2 0 −1
−2 0 4
0 1 −12

 1 −3
−2 −2
3 5

 =

 −1 −11
10 26
−38 −62

 .

(b) (4 marks) We use the chain rule to compute

∂z

∂x
=

(
1

x− y
− x+ y

(x− y)2

)
f ′ = −2f ′

y

(x− y)2

and
∂z

∂y
=

(
1

x− y
+

x+ y

(x− y)2

)
f ′ = 2f ′

x

(x− y)2
.

But this means that

x
∂z

∂x
+ y

∂z

∂y
= 2

(
− xy

(x− y)2
+

xy

(x− y)2

)
f ′ = 0,

as claimed.
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(c) i. (5 marks) If x 6= 0, the denominator is nonzero, and we can use the chain rule to
find

∂f

∂x1
=

x2
(x21 + x22)

1/2
− x21x2

(x21 + x22)
1/2

=
x32

(x21 + x22)
3/2
,

and
∂f

∂x2
=

x31
(x21 + x22)

3/2

by symmetry. For the case x = 0, note that f(t, 0) = 0 for all t ∈ R. Thus

lim
t→0

f(t, 0)− f(0, 0)

t
= 0,

so that
∂f

∂x1
= 0 at the origin. By symmetry,

∂f

∂x2
= 0.

ii. (3 marks) Consider the path (x1, x2) = (0, t) for t→ 0. According to i.,

∂f

∂x1
=
t3

t3
= 1,

which does not converge to 0 as t→ 0. Thus
∂f

∂x1
is not continuous at the origin,

and the same is true for
∂f

∂x2
by symmetry.

iii. (5 marks) Assume that f were differentiable at the origin. Then

f ′e1 =
∂f

∂x1
= 0

and

f ′e2 =
∂f

∂x2
= 0,

and so f ′ = (0, 0). Now by direct calculation, for v = (1, 1)

Dvf = lim
t→0

f(t, t)

t
=

t2√
2tt

=
1√
2
.

But on the other hand, since f is differentiable,

Dvf = A(e1 + e2) = 0,

which is a contradiction.

Continued...
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Cont... MVC

2. (25 marks)

(a) i. (1 mark) δ2jj = 1 + 1 + 1 = 3,

ii. (1 mark) εijj = −εijj, thus εijj = 0.

iii. (3 marks)

δijδjkεilmεlkn = εjlmεljn = −(δjjδmn − δjnδmj) = −(3δmn − δmn) = −2δmn.

(b) i. (3 marks)

[∇× (a× r)]i = εijk∂jεklmalrm = (δilδjm − δimδjl)al∂jrm =

(δilδjm − δimδjl)alδjm = (δilδjj − δijδjl)al = 3ai − ajδij = 2ai.

Thus
∇× (a× r) = 2a.

ii. (3 marks)

∇ ·
( r

r2

)
= ∂i

( ri
r2

)
=
δii
r2
− 2

riri
r4

=
3

r2
− 2

r2

r4
=

1

r2
.

(c) i. (4 marks)
∂r

∂r
= (sinφ cos θ, sinφ sin θ, cosφ) = hrr̂;

hr = |(sinφ cos θ, sinφ sin θ, cosφ)| = 1.

∂r

∂φ
= r(cosφ cos θ, cosφ sin θ,− sinφ) = hφφ̂;

hφ = |r(cosφ cos θ, cosφ sin θ,− sinφ)| = r.

∂r

∂θ
= r(− sinφ sin θ, sinφ cos θ, 0) = hθθ̂;

hθ = |r(− sinφ sin θ, sinφ cos θ, 0)| = r sinφ.
This means that

r̂ = (sinφ cos θ, sinφ sin θ, cosφ),

φ̂ = (cosφ cos θ, cosφ sin θ,− sinφ),

θ̂ = (− sin θ, cos θ, 0).

ii. (5 marks)

∇ = r̂
∂

∂r
+

φ̂

r

∂

∂φ
+

θ̂

r sinφ

∂

∂θ
,

and u = sin θr̂, so that

∇ · u = r̂ · r̂∂ sinφ

∂r
+ sin θ

φ̂

r
· ∂r̂
∂φ

+ sin θ
θ̂

r sinφ
· ∂r̂
∂θ
.
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Now

∂r̂

∂φ
= (cosφ cos θ, cosφ sin θ,− sinφ) = φ̂,

∂r̂

∂θ
= (− sinφ sin θ, sinφ cos θ, 0) = sinφθ̂,

and so

∇ · u = sin θ
φ̂ · φ̂
r

+ sinφ sin θ
θ̂ · θ̂
r sinφ

= 2
sin θ

r
.

(d) (5 marks)

∇ · (u× v) = εijk∂i(ujvk) = εijk(∂iuj)vk + εijkuj∂ivk =

vkεkij(∂iuj)− ujεjikuj∂ivk = v · (∇× u)− u · (∇× v).

Continued...
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Cont... MVC

3. (25 marks)

(a) (5 marks) From the definition of the line integral, we have that∫
C

∇f · dr =

∫ b

a

∇f(p(s)) · dp
ds

ds.

But from the Chain Rule it follows that

d

ds
f(p(s)) =

∂f

∂ri
(p(s))

dpi
ds

(s).

Therefore, ∫
C

∇f · dr =

∫ b

a

d

ds
f(p(s)) ds = f(p(b))− f(p(a)),

where the last equality follows from the Fundamental Theorem of Calculus.

(b) i. (4 marks) The equator is along φ = π/2, and thus

p(θ) = R(cos θ, sin θ, 0),

where θ runs from 2π to 0 (going west). Along the path,

f = R(sin θ,− cos θ, 0),

and
∂p

∂θ
= R(− sin θ, cos θ, 0).

Thus ∫
C

f · dr =

∫ 0

2π

f · ∂p
∂θ
dθ = −R2

∫ 2π

0

(− sin2 θ − cos2 θ)dθ = 2πR2.

ii. (5 marks) Stokes’ theorem reads∫
C

f · dr =

∫
S

∇× f · dS.

Using the right-hand rule, the orientation of S (the northern hemisphere) should
have the normal pointing inward. Thus

N =
∂s

∂θ
× ∂s

∂φ
= R2(− sinφ sin θ, sinφ cos θ, 0)× (cosφ cos θ, cosφ sin θ,− sinφ) =

−R2 sinφ(sinφ cos θ, sinφ sin θ, cosφ),

and
∇× f = (0, 0,−2).

Thus∫
S

∇×f ·dS = 2R2

∫ π/2

0

∫ 2π

0

sinφ cosφdθdφ = 2πR2

∫ π/2

0

sin 2φdφ = πR2(1−cos π) = 2πR2,

as in i.
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iii. (1 mark) The orientation is the opposite of ii., i.e. facing outward.

(c) i. (5 marks) Put
h = f∇g − g∇f

in Gauss’ theorem, ∫
V

∇ · hdV =

∫
∂V

h · ndS.

Now

∇ (f∇g − g∇f) = ∇f ·∇g + f4g −∇g ·∇f − g4f = f4g − g4f,

and the result follows.

ii. (5 marks) According to Gauss’ theorem,∫
V

∇ · vdV =

∫
∂V

v · ndS.

Put v = aφ, where a is an arbitrary, constant vector. Then ∇ · v = a ·∇φ, so
that

a ·
∫
V

∇φdV =

∫
V

∇ · vdV =

∫
∂V

v · ndS = a ·
∫
∂V

φndS.

But since this is true for any a, the statement follows.

End of solutions.
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