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Course Information

Prerequisites

• Calculus 1 (and Linear Algebra and Geometry, Analysis 1)

Description of the course

• The course develops multivariable calculus from Calculus 1. The main focus of the course is
on developing differential vector calculus, tools for changing coordinate systems and major
theorems of integral calculus for functions of more than one variable.

• This unit is central to many branches of pure and applied mathematics. For example,
in applied mathematics vector calculus is an integral part of describing field theories that
model physical processes and dealing with the equations that arise. It is used in second year
Applied Partial Differential Equations (which is a prerequisite for 3rd Fluid Dynamics and
Quantum Mechanics) and 3rd year Mathematical Methods and Differential Manifolds use
the material of Multivariable Calculus 2.

Resources

• Lecturer: Dr. Richard Porter, Room SM2.7

• Unit description:
http://www.maths.bris.ac.uk/study/undergrad/current units/unit/?id=782

• Web: http://www.maths.bris.ac.uk/~marp/mvcalc. Notes may contain extra sections
for interest or additional information. Problem sheets, solutions, homework feedback forms,
problems class sheets, past exam papers, links.

• Email: richard.porter@bris.ac.uk

• Books: Lots of books on multivariable/vector calculus. Jerrold E. Marsden & Anthony J.
Tromba, “Vector Calculus”, ed. 5 , W. H. Freeman and Company, 2003

• Maths Café

• Office Hours: Friday 2-3.

Problem Sheets/Problems Classes

• Homework set weekly from problems sheets.

• Timetabled problems classes/exercise classes: unseen problems/some from the problem
sheets/and as many as possible from past exam papers.

Exam

• Jan 1hr30min. 2 compulsory questions.

• No calculators.
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1 A review of differential calculus for functions of more

than one variable

Revision of results from Calculus 1

1.1 General maps from R
m to R

n

Let x ∈ R
m = (x1, x2, . . . , xm).

Often in 2D x ≡ (x, y) or in 3D x ≡ (x, y, z).

We define a general mapping, or vector function, say F : Rm → R
n s.t. x → F(x).

F(x) = (F1(x), F2(x), . . . , Fn(x)).

The components are scalar maps denoted by Fi : R
m → R (i = 1, . . . , n).

When the range is R, F is scalar and we often refer to these maps as scalar functions or more
simply functions and denote them by lower-case symbols, e.g. f : Rm → R.

Defn: A map F : Rm → R
n is linear if ∀x,y ∈ R

m, and λ, µ ∈ R, F(λx+ µy) = λF(x) + µF(y).

Proposition: A map F is linear iff ∃ a matrix A ∈ R
n×m s.t. F = Ax.

E.g. 1) F : R3 → R
2 s.t. (x1, x2, x3) → (x3 − x1, x2 + x1). Then

F(x) =

(

−1 0 1
1 1 0

)





x1

x2

x3



 = Ax

(a linear map)

E.g. 2) F : R2 → R
2 s.t. (x1, x2) → (x2x1, e

x2). Not a linear map.

1.2 The derivative of a map

Defn: The derivative of the map F : Rm → R
n is the m × n matrix F′(x) such that the i, jth

element is

{F′(x)}ij =
∂Fi

∂xj

It is the matrix which encodes, local to a point x0, say, the linear map representing the tangent
plane to the hypersurface at x = x0 defined by the mapping F(x).

E.g. In 1D we have a function f(x). The derivative of the function at x = x0 is defined as f ′(x0)
and represents the gradient of the line tangential to the curve f(x) at x = x0.
I.e. y = f(x0) + (x − x0)f

′(x0) is a linear map (a straight line) representing the tangent to the
curve f(x) at x = x0 and y′ = f ′(x0)
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In general the linear map y = F(x0) +F′(x0)(x− x0) represents the tangent plane to the surface
F(x) and y′ = F′(x0).

Defn: The matrix F′(x) with elements ∂Fi/∂xj is called the Jacobian matrix.

1.3 The gradient of a function

Defn: The gradient of a scalar function f : Rm → R (i.e. f(x)) is denoted

∇f ≡ (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xm)

Note: The rows of the Jacobian matrix are formed by gradients of the components of F, viz

F′(x) =











∇F1

∇F2

...
∇Fn











(More on this later)

1.4 The directional derivative

Defn: The directional derivative of F at x along v is a vector in R
n given by

DvF(x) =

(

dF1(x+ tv)

dt
, . . . ,

dFn(x+ tv)

dt

)

t=0

≡ dF(x+ tv)

dt

∣

∣

∣

∣

t=0

It measures the rate of change of F in the direction of v and it is formulated in terms of ordinary
1D derivatives.

Note: Can be shown
DvF(x) = F′(x)v.

Note: v must have unit magnitude, or |v| = 1 where

|v| =
√

v21 + v22 + . . .+ v2m

denotes the L2−norm.

Note: If x ∈ R
m and v ∈ R

m and f : Rm → R is a scalar function then

Dvf = v ·∇f (1)

1.5 Operations on maps

1. Let F,G be maps from R
m → R

n, then F+G : Rm → R
n is defined as

(F+G)(x) = F(x) +G(x)

2. Let F : Rm → R
n and f : Rm → R, then fF : Rm → R

n is defined by

(fF)(x) = f(x)F(x)
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3. If F : Rm → R
n and G : Rn → R

p, then G ◦ F : Rm → R
p is defined by

(G ◦ F)(x) = G(F(x))

Note: A “function of a function”.

1.6 Derivatives of operations on maps

The familiar rules for the derivative of a sum, product, and composition of functions (chain rule)
generalise to maps.

1. With λ, µ ∈ R

(λF+ µG)′ = λF′ + µG′,

or in components:
∂(λFi + µGi)

∂xj

(x) = λ
∂Fi

∂xj

(x) + µ
∂Gi

∂xj

(x).

2. The derivative of (fF)(x) is a matrix whose i, jth element is

∂(fFi)

∂xj

(x) =
∂f

∂xj

(x)Fi(x) + f(x)
∂Fi

∂xj

(x).

3.
(G ◦ F)′(x) = G′(F(x))F′(x), (2)

where the right-hand side denotes the product of the p×n matrix G′(F(x)) with the n×m
matrix F′(x). Equivalently,

∂(G ◦ F)i
∂xk

(x) =

p
∑

j=1

∂Gi

∂xj

(F(x))
∂Fj

∂xk

(x).

Note: This is the generalised Chain rule.

E.g. Recall the chain rule: Consider the function g(u, v) and u = u(x, y) and v = v(x, y). Then

∂g

∂x
=

∂g

∂u

∂u

∂x
+

∂g

∂v

∂v

∂x

and
∂g

∂y
=

∂g

∂u

∂u

∂y
+

∂g

∂v

∂v

∂y

This is the same as
(

gx
gy

)

= (gu, gv)

(

ux uy

vx vy

)
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1.7 Inverse maps

Let F : Rn → R
n and G = F−1 be in inverse map such that

(F−1 ◦ F)(x) = x; (3)

Applying (2) to (3), we find
(F−1)′(F(x))F′(x) = I,

where I is the n× n identity matrix. This follows since x ≡ Ix, a linear map with derivative I.

Note: if F(x) = Ax is a general linear map then F′(x) = A (easy to see/show).

Thus
(F−1)′(F(x)) = (F′)−1(x)

or “the derivative of the inverse is equal to the inverse of the derivative”.

1.7.1 Example: mapping Cartesian to polar coordinates

Let F : R2 → R
2 s.t. (r, θ) → (r cos θ, r sin θ) ≡ (x, y).

This means that

F′(r, θ) =

(

∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

)

=

(

cos θ −r sin θ
sin θ r cos θ

)

Taking inverses

(F′(r, θ))−1 =

(

cos θ sin θ
− sin θ/r cos θ/r

)

.

Now consider the inverse map F−1 : R2 7→ R
2 s.t. (x, y) → (

√

x2 + y2, tan−1(y/x)) ≡ (r, θ). Then

(F−1)′(x, y) =

(

∂r/∂x ∂r/∂y
∂θ/∂x ∂θ/∂y

)

=

(

x/
√

x2 + y2 y/
√

x2 + y2

−y/(x2 + y2) x/(x2 + y2)

)

Finally,

(F−1)′(F(r, θ)) =

(

r cos θ/r r sin θ/r
−r sin θ/r2 r cos θ/r2

)

which is the same as before.

1.8 Solving equations

Question: Given a function F : Rn → R
n, is there always an inverse function G ≡ F−1, which

satisfies
(G ◦ F)(x) = x?

The same question can be stated in terms of a solution to a nonlinear system of equations. Namely,
let

F(x) = y (4)
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for x,y ∈ R
n. Or, in full,

F1(x1, . . . , xn) = y1
...

...

Fn(x1, . . . , xn) = yn.

Then, given y, is there a x such that (4) is solved. If so, then x = F−1(y).

1.8.1 Inverse function theorem

Let F : Rn → R
n, with x0,y0 ∈ R

n such that

y0 = F(x0).

If the Jacobian matrix F′(x0) is invertible, then (4) can be solved uniquely as

x = F−1(y),

for y in the neighbourhood of y0.

Note: A matrix is invertible if and only if its determinant is non-zero. The determinant of the
Jacobian matrix F′ is often written as

JF(x0) ≡
∂(F1, . . . , Fn)

∂(x1, . . . , xn)

∣

∣

∣

∣

x=x0

(5)

and called the Jacobian determinant.

E.g. Consider the system of equations

x2 + y2

x
= u, sin x+ cos y = v.

Q: Given (u, v), we want to solve for (x, y). Near which points does this define a unique function ?

A: We define F : R2\{0} → R
2 s.t.

y ≡ F(x) =

(

x2 + y2

x
, sin x+ cos y

)

.

(so that y = (u, v) and x = (x, y).)
The Jacobian determinant is

∂(u, v)

∂(x, y)
=

∣

∣

∣

∣

(x2 − y2)/x2 2y/x
cosx − sin y

∣

∣

∣

∣

=
y2 − x2

x2
sin y − 2y

x
cosx.

E.g. (i) near x0 = (1, 1) (where y = (2, sin(1) + cos(1))) we can solve for x in a neighborhood of
x0; E.g. (ii) near x0 = (π/2, π/2) (where y = (π, 1)) where JF = 0 we can’t!
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1.8.2 Implicit function theorem

Similar to above. Consider an equation for x ∈ R
m, y ∈ R

n in the form

F(x,y) = 0 (6)

where F : Rm+n → R
n.

Note: If F is linear in y then it can be written in the form y = G(x) for some G. We suppose
that this is not the case.
Suppose that (6) is satisfied by the pair x0, y0. Then we can express solutions of this as y = y(x)
for y : Rm → R

n in the neighbourhood of x0, y0 provided the Jacobian determinant

∂(F1, . . . , Fn)

∂(y1, . . . , yn)

∣

∣

∣

∣

x=x0,y=y0

is non-zero.

E.g. Consider f(x, y) = 0 where f(x, y) = x2 + y2 − 1. This is satisfied by points (x0, y0) on the
unit circle. If we try to express it as y = y(x) we get into trouble since

y = ±
√
1− x2

and there are two solutions. The implicit function theorem applied to this example requires the
determinant of the 1× 1 matrix

∂f

∂y

evaluated at (x0, y0) to be non-zero. This is 2y0 which is non-zero apart from at y0 = 0. So
we can express the solution y = y(x) local to a point (x0, y0) provided y0 6= 0. Which is obvi-
ous in our case as if y0 > 0 we are on the upper solution branch where y =

√
1− x2 and vice versa.

Note: We can also find values of derivatives at these points since, using the e.g. above, differen-
tiation of f(x, y) = x2 + y2 − 1 = 0 w.r.t. x gives

2x+ 2y
dy

dx
= 0

and so
dy

dx

∣

∣

∣

∣

x=x0,y=y0

= −x0

y0
.

This idea can be extended to vector functions.

1.9 Higher-order derivatives

Start with 2nd order

Defn: For F : Rm → R
n,

∂2Fi

∂xk∂xj

(x) =
∂

∂xk

(

∂Fi

∂xj

)

(x) =
∂

∂xj

(

∂Fi

∂xk

)

(x) =
∂2Fi

∂xj∂xk

(x).

under normal circumstances.
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E.g. f(x, y) = x3 − 3xy2. Then

fxx ≡ ∂2f

∂x∂x
= 6x, fxy ≡

∂2f

∂x∂y
= −6y, fyx = −6y, fyy = −6x

Note: Extended naturally to higher orders.

1.9.1 Taylor’s theorem

Higher-order derivatives are useful in Taylor’s theorem in dimension ≥ 2, allowing one to approx-
imate functions of several variables near a point.

Recall that for a scalar function of a single variable,

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + higher order terms

How do we generalise to higher dimensions ? Well, it gets tricky. E.g. for a scalar function f(x, y),

f(x, y) = f(x0, y0) + (fx, fy)

(

x− x0

y − y0

)

+
1

2
(x− x0, y − y0)

(

fxx fxy
fyx fyy

)

x=x0,y=y0

(

x− x0

y − y0

)

+ higher order terms

with an obvious generalisation to functions of more than 2 variables.

The higher order terms are complicated and require some complex notation.

For vector functions, what we do know is that

F(x) = F(x0) + F′(x0)(x− x0) + terms of size like |x− x0|2

as this is the definition of F′.
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