
2 Differential vector calculus

2.1 Linear algebra

Focus now on 3D, and adopt convention that position vector r = (x, y, z) ≡ (x1, x2, x3) ∈ R
3 to

describe equations pertaining to physical applications.

Notation: The Cartesian (unit) basis vectors in R
3 are x̂ = (1, 0, 0) ≡ e1, ŷ = (0, 1, 0) ≡ e2 and

ẑ = (0, 0, 1) ≡ e3 such that r = xx̂+ yŷ + zẑ ≡ x1e1 + x2e2 + x3e3.

Also use r = |r| is the length of the vector.

Defn: The dot product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3) is defined

u · v = u1v1 + u2v2 + u3v3 ≡
3

∑

j=1

ujvj

Notation: Einstein summation convention: Drop the
3

∑

j=1

in the above on the understanding that

repeated suffices imply summation. I.e.

u · v = ujvj

E.g. r = |r| = √
r · r =

√

x2
i .

Defn: The Kronecker delta symbol δij is defined to be

δij =

{

1, if i = j
0, if i 6= j

E.g. 1) xi = δijxj since this is
3

∑

j=1

δijxj

E.g. 2) δii = 3.

E.g. 3) ei · ej = δij .

E.g. 4) x = xjej and taking dot product with ei gives xi = x · ei.

Defn: The cross product of two vectors u,v ∈ R
3, vector given by

u× v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

≡ (u2v3 − v2u3)e1 + (u3v1 − v3u1)e2 + (u1v2 − v1u2)e3. (7)

Note: Defintion implies antisymmetry: u× v = −v × u.

Defn: The Levi-Civita tensor (or antisymmetric tensor) is defined by

1. ǫ123 = 1
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2. ǫijk = 0 if any repeated suffices. E.g. ǫ113 = 0.

3. Interchanging suffices implies reversal of sign. E.g. ǫijk = −ǫjik.

Implies ǫijk are invariant under cyclic rotation of suffices. Thus ǫ123 = ǫ231 = ǫ312 = 1, ǫ213 =
ǫ132 = ǫ321 = −1, and all 21 others are zero.

Note: (Very nice) cross product can be written as

[u× v]i = ǫijkujvk. (8)

there is a double sum on the right hand side, by the summation convention. The defintion of ǫijk
guarantees the antisymmetry of the cross product (check !).

Proposition:
ǫijkǫilm = δjlδkm − δjmδkl. (9)

Proof: Exercise !

Example: Prove the vector triple product relation

a× (b× c) = (a · c)b− (a · b)c.

Proof:

[a× (b× c)]i = ǫijkaj[b× c]k

= ǫijkajǫklmblcm

= ǫkijǫklmajblcm

= (δilδjm − δimδjl)ajblcm

= ajcjbi − ajbjci = (a · c)bi − (a · b)ci
True for i = 1, 2, 3, so result is proved.

2.2 Scalar and vector fields

Defn: Conventional language:

A scalar field on R
3 is a function f : R3 → R.

A vector field on R
3 is a map v : R3 → R

3.

Scalar and vector fields defined in R
3 are of particular importance for physical applications.

E.g.s:

• (Scalar fields) Temperature T (r); mass density ρ(r) for a fluid or gas; electric charge density
q(r).

• (Vector fields) Velocity v(r) of a fluid or gas; electric and magnetic fields E(r) and B(r),
displacement fields in elastic solid u(r).

There are three basic first-order differential operations in vector calculus.
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2.3 Gradient (grad)

Defn: The gradient of a scalar field f , denoted ∇f , is the vector field given by

∇f(r) =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

(I.e. the gradient maps scalar to vector fields.)

E.g. 1)

∇ tan−1
(y

x

)

=

( −y

x2 + y2
,

x

x2 + y2
, 0

)

=
1

x2 + y2
(−yx̂+ xŷ).

E.g. 2) Recall r =
√

x2 + y2 + x2

∇r =
(x

r
,
y

r
,
z

r

)

=
(x, y, z)

r
=

r

r

r/r is the unit vector from the origin to the point r; we often denote this as r̂.

Note: [∇r]i = xi/r.

E.g. 3) If f(r) = g(r) (i.e. a function depends only on the distance from the origin) then

[∇g(r)]i =
∂g(r)

∂xi

=
dg(r)

dr

∂r

∂xi

≡ g′(r)[∇r]i = g′(r)
(r

r

)

i

and thus ∇g(r) = g′(r)r̂ (c.f. potentials, central forces in Mech 1).

Recall from Calculus 1, two important interpretations of the gradient:

2.3.1 Interpretation of the gradient

Provided ∇f is nonzero, the gradient points in the direction in which f changes most rapidly.

Proof: let v be s.t. |v| = 1. Then rate of change of f in direction v is the directional derivative
(see (1)) Dvf(r) = v ·∇f = |∇f | cos θ, where θ is the angle between v and ∇f . Maximised when
θ = 0. I.e. when v in direction ∇f .

2.3.2 Another interpretation of the gradient

The gradient of f is perpendicular to the level surfaces of f .

(A level surface S is defined by values of r s.t. f(r) = C, a constant.)

Proof: Let c(t) lie in S. Then f(c(t)) = C, for all t. The chain rule yields

0 =
d

dt
f(c(t)) = ∇f(c(t)) · c′(t)

and since c′(t) is parallel to S at c(t), we have our result.
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2.3.3 Examples

E.g. 1) The temperature T in a room is a function of 3D position (x, y, z):

T (r) =
ex sin(πy)

1 + z2

If you stand at the point (1, 1, 1) in which direction will the room get coolest fastest ?

A:

∇T =

(

ex sin(πy)

1 + z2
,
πex cos(πy)

1 + z2
,−2zex sin(πy)

(1 + z2)2

)

and at (x, y, z) = (1, 1, 1), ∇T = (1
2
e, 0,−1

2
e). So a vector pointing in the direction where temper-

ature gets coolest is (−1, 0, 1).

E.g. 2) Take f(x, y) = x2 + 2y2. Then ∇f = (2x, 4y).

Then: e.g. (i) ∇f evaulated at (x, y) = (1, 1) is (2, 4) and so the steepest ascent of f at (1, 1) is
in direction tan−1(2) w.r.t. x axis and gradient in that direction is |∇f | = 2

√
5;

or e.g. (ii) D(1,0)f = (2x, 0) and this equals 0 if x = 0 meaning the gradient pointing in the +ve
x-direction of f along x = 0 is zero.

E.g. 3) You are on a bicycle about to climb Clifton Vale. The gradient of this road is 20%. You
cannot cycle up such steep gradients, but you can manage 10% gradients. At what angle to the
road do you need to zig-zag to cut the gradient down to 10% ?

A: 20% gradient is one-in-five and, with x pointing up the road, the height of the hill is given by
f(x, y) = 1

5
x. So ∇f = (1

5
, 0). Let us cycle in a direction θ w.r.t. to the x-axis. Then the unit

vector pointing in this direction is
u = (cos θ, sin θ)

and the directional derivative Duf gives the gradient in the direction u. We want this to be 10%
or one-in-ten so

1
10

= Duf = u · ∇f = (cos θ, sin θ) · (1
5
, 0) = 1

5
cos θ

and this means θ = 60◦.

2.4 Divergence (Div)

Defn: The divergence of a vector field v(r), denoted ∇ · v, is the scalar field given by

∇ · v =
∂

∂xj

vj(r) ≡ ∂jvj .

2.4.1 Interpretation of divergence

Harder without physical setting, but broadly it measures the expansion (positive divergence) or
contraction of a field at a point. It measures flux (rate of transport of a field) entering a point.
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2.4.2 Examples

1) v(r) = (xyz, xyz, xyz) then
∇ · v = yz + zx+ xy

2)

∇ · r = ∂xj

∂xj

= δjj = 3.

3)

∇ · (a× r) =
∂

∂xi

ǫijkajxk = ǫijkaj
∂xk

∂xi

= ǫijkajδik = ǫijiaj = 0

since ǫiji = 0.

2.5 Curl

Defn: The curl of a vector field v(r), denoted ∇× v, is the vector field (i.e. in R
3) given by

∇× v =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂x ∂y ∂z
v1 v2 v3

∣

∣

∣

∣

∣

∣

≡
(

∂v3
∂y

− ∂v2
∂z

,
∂v1
∂z

− ∂v3
∂x

,
∂v2
∂x

− ∂v1
∂y

)

.

Alternatively,

[∇× v]i = ǫijk
∂

∂xj

vk (10)

as for cross products.

2.5.1 Interpretation of Curl

Again harder without physical setting, but broadly it measures the rotation or circulation of a
vector field (because it needs direction) at a point.

2.5.2 Examples

1) Let v(r) = (y2, x2, y2). Then

∇× v = (2y, 0, 2(x− y))

2)
[∇× r]i = ǫijk∂jxk = ǫijkδjk = ǫijj = 0,

so ∇× r = 0.
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2.6 Second-order differential operations

Schematically, grad, div and curl act as follows:

grad: scalar fields → vector fields

div: vector fields → scalar fields

curl: vector fields → vector fields

The operations of grad, div and curl can be combined. Thus, the following combination of oper-
ations make sense:

curl grad: scalar fields → vector fields

div grad: scalar fields → scalar fields

grad div: vector fields → vector fields

div curl: vector fields → scalar fields

curl curl: vector fields → vector fields

2.6.1 Null Identities

1) For scalar fields f
∇× (∇f) = 0.

Proof: We have that

[∇× (∇f)]i = ǫijk∂j∂kf = −ǫikj∂j∂kf = −ǫikj∂k∂jf = −[∇ × (∇f)]i.

Thus since the expression equals its own negative, it must vanish.

2) For vector fields, v
∇ · (∇× v) = 0

Proof: We have that
∇ · (∇× v) = ∂iǫijk∂jvk = ǫijk∂i∂jvk,

which must vanish for the same reason.

The remaining combinations of grad, div and curl are related to a second-order differential operator
called the Laplacian...

2.7 The Laplacian

Defn: The Laplacian of a scalar field f(r), denoted ∇2f (or △f), is the scalar field given by

△f = ∇ ·∇f(r) = ∂2
i f ≡

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

f.

The Laplacian of a vector field v(r), is

△v = (△v1,△v2,△v3) .
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Example: For a vector field v(r),

△v = −∇× (∇× v) +∇(∇ · v).

Proof: We consider the ith component of the 1st RHS term:

[∇× (∇× v)]i = ǫijk∂j(∇× v)k

= ǫijk∂jǫklm∂lvm

= ǫkijǫklm∂j∂lvm

= (δilδjm − δimδjl)∂j∂lvm

= ∂i∂mvm − ∂j∂jvi = [∇(∇ · v)−△v]i

which shows that all components agree with our claim.

2.8 Curvilinear coordinate systems

All differential operators defined above were expressed in Cartesian coordinates. For many prac-
tical problems more natural to express problems in coordinates aligned with principal features of
the problem. E.g. Polars are appropriate for circular domains.

Q: How do we recast the differential operators in a differential coordinate system ?

2.8.1 Coordinate transformations

Defn: Curvilinear coordinates are defined by a smooth function r : R3 → R
3 which maps a point

q = (q1, q2, q3) in one coordinate system to a point in Cartesian space: r ≡ (x, y, z) = r(q) =
r(q1, q2, q3). I.e.

x = x(q1, q2, q3), y = y(q1, q2, q3), z = z(q1, q2, q3)

The inverse map, if it exists (see later) is

q1 = q1(x, y, z), q2 = q2(x, y, z), q3 = q3(x, y, z).

E.g. In 2D, if q1 = r and q2 = θ then x = x(r, θ) = r cos θ and y = y(r, θ) = r sin θ. The inverse
map is r = r(x, y) =

√

x2 + y2, θ = θ(x, y) = tan−1(y/x).

Defn: The surfaces qi = const are called coordinate surfaces. The space curves formed by their
intersection in pairs are called the coordinate curves. The coordinate axes are determined by the
tangents to the coordinate curves at the intersection of three surfaces. They are not, in general,
fixed directions in space.

In Cartesians the standard basis can be written

x̂ =
∂r

∂x
, ŷ =

∂r

∂y
, ẑ =

∂r

∂z

and a point P in space is written r = xx̂ + yŷ + zẑ.
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