
We can apply the same idea to the curvilinear system, so that the same point P is given by
q = q1q̂1 + q2q̂2 + q3q̂3 in terms of a local basis at P , written

q̂1 =
1

h1

∂r

∂q1
, q̂2 =

1

h2

∂r

∂q2
, q̂3 =

1

h3

∂r

∂q3

and to ensure q̂i are unit vectors, we normalise by

hi =

∣
∣
∣
∣

∂r

∂qi

∣
∣
∣
∣
,

which are called the metric coefficients or scale factors.

Note: the use of Greek indices in, for e.g.

q̂α =
1

hα

∂r

∂qα

for α = 1, 2, 3 indicates that the summation convention is not applied.

Remark: Is this always possible ? I.e. is there always a unique map from one system to another
? This is the same as asking if there is an inverse map. Thus (by the inverse function theorem)
the answer lies in the Jacobian matrix of the map, given here by r′(q) which is the matrix with
hαq̂α as column vectors (for α = 1, 2, 3). Thus the Jacobian determinant

J
r
=

∂(x, y, z)

∂(q1, q2, q3)
≡

∣
∣
∣
∣
∣
∣

h1(q̂1)1 h2(q̂2)1 h3(q̂3)1
h1(q̂1)2 h2(q̂2)2 h3(q̂3)2
h1(q̂1)3 h2(q̂2)3 h3(q̂3)3

∣
∣
∣
∣
∣
∣

must be non-vanishing.

Figure 1: A local basis in cylindrical polar coordinates.

Defn: If local basis vectors of a curvilinear coordinate system are mutually orthogonal, we call it
an orthogonal curvilinear coordinate system. Convention dictates that the system be right-handed,
or q̂1 = q̂2 × q̂3.
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Figure 2: A local basis in spherical polar coordinates. The vector r̂ points along a ray from the
center, φ̂ points along the meridians, and θ̂ along the parallels.

In the following, we will deal exclusively with orthogonal systems.

Examples:

1) Consider the linear transformation x′

i = Rijxj , where R is an orthogonal matrix (a matrix s.t.
RTR = I which implies R−1 = RT ). I.e. the transformation can be written x′ = Rx. Then

(x1, x2, x3) = r(x′

1
, x′

2
, x′

3
) = RTx′ = (Rj1x

′

j , Rj2x
′

j , Rj3x
′

j),

and

∂r

∂x′

1

= (R11, R12, R13),

∂r

∂x′

2

= (R21, R22, R23),

∂r

∂x′

3

= (R31, R32, R33),

The matrix equation RTR = I can be expressed as δik = RT
ijRjk = RjiRjk and so the scale factors

hα =
√

R2

jα =
√
δjα = 1.

Thus the local basis vectors are

ej
′ = (Rj1, Rj2, Rj3) , j = 1, 2, 3.

These are constant, i.e. they do not vary with position.

Note: ej
′ · ek

′ = RjiRjk = δik so the basis vectors are othonormal.

In other words, the new coordinate axes are a general rotation of the original x̂, ŷ, ẑ axes.

2) In 3D, cylindrical polar coordinates are defined by the mapping

(x, y, z) = r(r, θ, z) = (r cos θ, r sin θ, z)
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see Fig. 1. It follows that

∂r

∂r
= (cos θ, sin θ, 0),

∂r

∂θ
= (−r sin θ, r cos θ, 0),

∂r

∂z
= (0, 0, 1).

The scale factors are

hr =

∣
∣
∣
∣

∂r

∂r

∣
∣
∣
∣
= 1, hθ =

∣
∣
∣
∣

∂r

∂θ

∣
∣
∣
∣
= r, hz =

∣
∣
∣
∣

∂r

∂z

∣
∣
∣
∣
= 1. (11)

Thus the local basis vectors are (using standard notation):

r̂ = (cos θ, sin θ, 0), θ̂ = (− sin θ, cos θ, 0), ẑ = (0, 0, 1), (12)

and these vary with position. Note that r̂ · θ̂ = r̂ · ẑ = θ̂ · ẑ, and r̂ = θ̂ × ẑ = 0, so cylindrical
coordinates are indeed orthogonal.

3) Spherical polar coordinates are defined by the mapping

(x, y, z) = r(r, φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ),

see Fig. 2. Now the derivatives with respect to the coordinates are

∂r

∂r
= (sin φ cos θ, sinφ sin θ, cosφ),

∂r

∂φ
= (r cos φ cos θ, r cos φ sin θ,−r sinφ),

∂r

∂θ
= (−r sinφ sin θ, r sin φ cos θ, 0),

and the scale factors become (check):

hr =

∣
∣
∣
∣

∂r

∂r

∣
∣
∣
∣
= 1, hφ =

∣
∣
∣
∣

∂r

∂φ

∣
∣
∣
∣
= r, hθ =

∣
∣
∣
∣

∂r

∂θ

∣
∣
∣
∣
= r sinφ. (13)

Thus the local basis vectors are

r̂ = (sinφ cos θ, sinφ sin θ, cosφ),

φ̂ = (cosφ cos θ, cosφ sin θ,− sinφ),

θ̂ = (− sin θ, cos θ, 0), (14)

and vary with position. Again, r̂ · φ̂ = r̂ · θ̂ = φ̂ · θ̂ = 0, and r̂ = φ̂× θ̂, so spherical coordinates
are orthogonal.

2.8.2 Transformation of the gradient

The differential operator ∇ is the Cartesian vector

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

.
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We want this to be transformed into derivatives w.r.t the local coordinates q1, q2, q3. Then for
fixed α = 1, 2, 3, the chain rule gives

1

hα

∂f

∂qα
=

1

hα

∂xj

∂qα

∂f

∂xj

= q̂α ·∇f (15)

(summation over j is implied, but not α).

We are reminded that if u = u1q̂1 + u2q̂2 + u3q̂3 then the orthonormal property of the local basis
functions means uj = u · q̂j . If we compare with (15) with u = ∇f we get

∇f =

3∑

α=1

q̂α

hα

∂f

∂qα
, and so ∇ =

3∑

α=1

q̂α

hα

∂

∂qα
. (16)

E.g. 1) In cylindrical polar coordinates, according to (16) and (11), we have

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z

E.g. 2) In spherical coordinates, according to (16) and (3.2),

∇ = r̂
∂

∂r
+ φ̂

1

r

∂

∂φ
+ θ̂

1

r sinφ

∂

∂θ

2.8.3 Transformation of the divergence

To find ∇ · u in curvilinear coordinates we first need to express the vector field u in the local
coordinate system. I.e.

u = u1q̂1 + u2q̂2 + u3q̂3

The difficulty here is that both ui and q̂i depend on (q1, q2, q3). We come at the divergence in a
slightly roundabout way.

First, we note from (16) that

∇qα =
q̂α

hα

Now note that

∇× (q2∇q3) = q2 (∇× (∇q3))
︸ ︷︷ ︸

=0

+(∇q2)× (∇q3) =
q̂2

h2

×
q̂3

h3

=
q̂1

h2h3

Then from §2.6.1 (Null identites: ∇ · (∇×A) = 0, ∇× (∇f) = 0 for any A, f ,)

∇×

(
q̂α

hα

)

= 0, ∇ ·

(
q̂1

h2h3

)

= 0.

Results true for the 2 cyclic permutations (1 → 2, 2 → 3, 3 → 1)

∇ ·

(
q̂2

h1h3

)

= ∇ ·

(
q̂3

h1h2

)

= 0
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