We can apply the same idea to the curvilinear system, so that the same point P is given by
d = ¢1q1 + @042 + ¢3q3 in terms of a local basis at P, written

A

O S
& hy 8(]17 i ho 8(]27 - hs Ogs

A~

and to ensure q; are unit vectors, we normalise by

or
dq;

)

-

which are called the metric coefficients or scale factors.

Note: the use of Greek indices in, for e.g.

L 1 or
Qo= 0 s

for a = 1,2, 3 indicates that the summation convention is not applied.

Remark: Is this always possible ? L.e. is there always a unique map from one system to another
? This is the same as asking if there is an inverse map. Thus (by the inverse function theorem)
the answer lies in the Jacobian matrix of the map, given here by r’'(q) which is the matrix with
haQo as column vectors (for o = 1,2,3). Thus the Jacobian determinant

hi(Q1)1  haf

8 » Y ' A\

Jr — % = hl(ql)Q h2(
q1, 42, q3 hi(@1)s ha(@2)s hs(

must be non-vanishing.

”

Figure 1: A local basis in cylindrical polar coordinates.
Defn: If local basis vectors of a curvilinear coordinate system are mutually orthogonal, we call it

an orthogonal curvilinear coordinate system. Convention dictates that the system be right-handed,
or g1 = Q2 X Q3.
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Figure 2: A local basis in spherical polar coordinates. The vector T points along a ray from the
center, ¢ points along the meridians, and 0 along the parallels.

In the following, we will deal exclusively with orthogonal systems.
Examples:

1) Consider the linear transformation x; = R;;x;, where R is an orthogonal matrix (a matrix s.t.
RTR = I which implies R~ = RT). 1.e. the transformation can be written x' = Rx. Then

(w1, 29, 23) = (2, 2y, 75) = R'x = (Rjaf, Ry, Rysay),
and
88;,1 = (Ra1, Rz, Ri),
88;,2 = (Ra1, Raa, Ra3),
(,f;g = (R, Ran, Rss),

The matrix equation RT R = I can be expressed as 6;; = R%Rjk = R;;Rj, and so the scale factors
ha = ,/R?a = /0jo = L.

Thus the local basis vectors are
e;' = (Rj1,Rjo, Rj3), j=1,2,3.

These are constant, i.e. they do not vary with position.
Note: e;' - e;' = Rj;Rj; = d;, so the basis vectors are othonormal.
In other words, the new coordinate axes are a general rotation of the original X, ¥, Z axes.

2) In 3D, cylindrical polar coordinates are defined by the mapping

(x,y,2) =1(r,0,z) = (rcosf,rsinb, z)
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see Fig. 1. It follows that

% = (cosf,sin6,0), % = (—rsinf,rcosb,0), % = (0,0,1).
The scale factors are
hT:%:L hgz%:’f‘, hZ:%:L (11)
Thus the local basis vectors are (using standard notation):
i = (cosf,sinf,0), 6= (—sinb,cosh,0), z=(0,0,1), (12)
and these vary with position. Note that t - 0=1%-2=0-2,andt =0 x2=0, so cylindrical

coordinates are indeed orthogonal.
3) Spherical polar coordinates are defined by the mapping
(x,y,z) =r(r,¢,0) = (rsin¢cosd,rsin¢sinf, r cos ¢),

see Fig. 2. Now the derivatives with respect to the coordinates are

? = (sin ¢ cosf,sin ¢ sin b, cos ¢),

-

or . :

3_¢ = (rcos¢cos,rcospsinf, —rsin @),
% = (—rsin¢sinf, rsingcosh,0),

and the scale factors become (check):

or

or or
06

or ‘
h, = o =1, hy,= g = rsin ¢. (13)

=T, hgz‘

Thus the local basis vectors are

(sin ¢ cos 6, sin ¢ sin 6, cos ¢),
(cos ¢ cos B, cos ¢ sin @, — sin @),
= (—sin#,cos6,0), (14)

> B

and vary with position. Again, T - q,’A> —7.-0= q,’; 0= 0, and T = q,’A> X é, so spherical coordinates
are orthogonal.

2.8.2 Transformation of the gradient

The differential operator V is the Cartesian vector
g (20 0y
Ox’ Oy’ 0z
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We want this to be transformed into derivatives w.r.t the local coordinates ¢, ¢o,q3. Then for
fixed a = 1, 2, 3, the chain rule gives

1 of 1 Ox; Of .
At i A -V 1
ha 0q0  ho g, Ox; Lo / (15)

(summation over j is implied, but not «).

We are reminded that if u = u1q; + u2qs + u3qs then the orthonormal property of the local basis
functions means u; = u - q;. If we compare with (15) with u = V f we get

Vf:Z%ﬁ and so V:Z%i. (16)

o 10 .~ 1 0

2.8.3 Transformation of the divergence

To find V - u in curvilinear coordinates we first need to express the vector field u in the local
coordinate system. IL.e.
u = u1q; + u2Qa + u3qs

The difficulty here is that both w; and §; depend on (q1, g2, q3). We come at the divergence in a
slightly roundabout way.

First, we note from (16) that

o
Vg, = .
Now note that
V x (2Vas) = a2 (V % (Vs)) (Vi) x (Vgs) = 22 5 B = D
LV x\Va)) ho  hy  hahs

=0

Then from §2.6.1 (Null identites: V- (V x A) =0, V x (Vf) =0 for any A, f,)

Qa _ . (All _
(B0 v ()

Results true for the 2 cyclic permutations (1 — 2,2 — 3,3 — 1)
d2 a3
V. =V =0
<h1h3) (h1h2)
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