So now

Viu = V. (<U1h2h3) &4 ) + 2 cyclic perms
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using the fact that §, - gz = dags-

E.g. (Cylindrical polar coordinates.) First write
u=u,r+ ugé + u,Z.
with h, =1, hg =71, h, =1, so

L [o(ru,)  Ous O(ruy)]| Ou, u, 10ug Ou,
Vous e Y e T T Trae e

Eg Ifu=f(r)0 = (0, f(r),0) = (ur, ug, u.) then V- u=0.

2.8.4 Transformation of curl

Similarly to div, we write

Vxu = Vx <(h1u1)h—

A A

) + 2 cyclic perms

= V(hu) x — LI (hiu)V x — 19 cyclic perms

h1 h1
= qa () & + 2 cyclic perms
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2.9 Examples

1) The Laplacian of a scalar field ¢ is A¢p = V - V. Since

06 4100 00
Vo= 8 +0—%+ P

we use the defn of div to give

¢ 10¢ 10¢ o0\  0*¢ 10 10%
A= 8r<8r>+r(’9r+ 8_<r80>+82(82)—w+r8r+r2602+
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2) Now the curl in cylindrical polars:

~ (10u,  Oug) Oou, Ou, \ » Oug ug 10u,\ .
VX“(?aN@)”(aJm)‘”(ﬁ*?‘;ae)z’

Exercise: Do the same for spherical polars !!

Remark: If curvilinear system not orthogonal then a real mess.
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3 Integration theorems of vector calculus

Having done differential vector calculus, we turn to integral vector calculus. These are equally
important in applications as you will see in APDE2, Fluid Dynamics and beyond. We shall derive
three (quite stunning) main integral identities all of which may be considered as higher-dimensional
generalisations of the Fundamental Theorem of Calculus:

t/f@szﬂw—ﬂ@

The LHS is a one-dimensional integral (i.e. an integral over a line) which is equated to zero-
dimensional (i.e. pointwise) evaluations on the boundary of the integral (here at = = a,b).

Remark: The formula for integration by parts is found by letting f(z) = u(z)v(z) in the above.
Check !

3.1 The line integral of a scalar field

An ordinary 1D integral can be regarded as integration along a straight line. For example if F'(x)
is the force on a particle alowed to move along the z-axis,

/:2 F(z)dx

is the “work done” moving it from z; to x5. We want to integrals along general paths in R? or R3.

Defn: A path is a bijective (i.e. one-to-one) map p : [t1,t2] — R? s.t. ¢+ p(t). It connects the
point p(t;) to p(ty) along a curve C, say. We say the curve C' is parameterised by the path.

Defn: The line integral of a scalar field f : R® — R along a curve C' is denoted

/Cf(r) ds.

and ds = |dr| denotes the elemental arclength. Since r = p(¢) on C, dr = p’(t) dt and so

[ rwas= [ ool

E.g. 1) Let p(t) = (t,t,t) for t € [0, 1] connects the points (0,0,0) to (1,1,1) by a straight line
of length v/3. If f = zyz then

' V3
/fds:/ t3\/1+1—|—1dt:T
c 0
E.g. 2) Let p(t) = (t?,%,1?) for t € [0, 1] parametrises the same curve as in 1). With the same
f we have

/Cfds:/01t6\/(2t)2+(2t)2+(2t)2dt:?_

23



Parameterisation is not unique. Suggests line integral independent of parametrisation. Easy to
show (but not here).

Note: Line integral is dependent on path direction.

/Cfds:—/cfds

(—C'is C in reverse). We are used to this notion in 1D, viz / f(x)dx = —/ f(z)dx.
1 2

xT

3.2 The line integral of a vector field

Defn: Let F(r) : R® — R3 be a vector field, and let p(t) be a path on the interval [t;,%]. The
line integral of F along p is defined by

[E = [TRw) o

as above.

Proposition: As above, the value of the line integral is not dependent on parametrisation of C'
but is negated by a reversal of C'.

E.g: Integrate F = sin ¢Z along a meridian of a sphere of radius R from the south to the north pole.

A: From the description of the path, C', convenient to use spherical coordinates (r, ¢, ). Le.
p(¢) = Rt = R(sin ¢ cos @, sin ¢ sin b, cos ¢);

(see earlier defn of ¥, é, ¢ in spherical polars) then

dp o .
%_Rﬁgb—R(p'

From definition of ¢ in () we have Z - ¢ = —sin¢ and so

/CF.dr:[TOF.p’(@d(b:R/7r0sin¢z-<;3d¢:—R/Osin2¢d¢:%.

™

Proposition: Let f(r) be a scalar field and let C' be a curve in R? parameterised by the path
p(t), tl S t S tQ. Then

/C Vf-dr = f(p(t2) — F(p(t)).

This is the fundamental theorem of Calculus for line integrals.

Proof: We have \
[ viea= [ wime)- v
c t

1
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But from the Chain rule it follows that

(1) = p(1) - V()
Therefore,

/C Vf-dr = / " F(p(t) di = F(p(t2)) ~ F(p(1).

t1
from the Fundamental Theorem of Calculus.

Note: If C' is closed, the line integral over a gradient field vanishes. As a result, line integrals of
gradient fields are independent of the path C.

Remark: The line integral of a vector field is often called the work integral, since if F represents
a force, the integral represents the work done moving a particle between two points. If F = V f
for some scalar field f (often called the potential) then the work done moving the particle is inde-
pendent of the path taken. Moreover the work done moving a particle which returns to the same
position is zero. Such a force is called conservative.

E.g. The force due to gravity is F = (0,0, —g) = V f if f = —gz and so gravity is a conservative
force.

3.3 Surface integrals of scalar and vector fields.

We now generalise 1D integrals to 2D integrals. We start with parametrisations of surfaces.

Defn: A path p(t), for ¢ € [t1,t5] is closed if p(t1) = p(t2). A closed path is simple it it does not
intersect with itself apart from at the end points t;, .

Defn: Let D C R? let D represent the boundary of D (it should be a simple closed path) and
let D be DUOD.

Now define a map s : D — R3 s.t (u,v) ~ s(u,v) and ds/0u, ds/0v are linearly independent on
D. A surface S € R? is given in parametrised form by S = {s(u,v) | (u,v) € D}.

E.g. Let
D = {(u,v) |u* +v* < R*}.

Then 9D is the circle {(u,v) |u*+v? = R?*} of radius R. Let s = (u,v,v/R? — u? —v?), then S is
a hemispherical surface.

Note: this is not the only way to parametrise a hemisphere; could use spherical polars.

Defn: The integral of a scalar field f over a surface S is denoted by

[ fwas = [ rwasi

where dS = idS and f is a unit vector pointing out from S (a surface element is defined by its
size dS and a direction, i1, being the normal to the surface). Now the two vectors

u



