
But from the Chain rule it follows that

d

dt
f(p(t)) = p′(t) ·∇f(p(t))

Therefore,
∫

C

∇f · dr =
∫ t2

t1

d

dt
f(p(t)) dt = f(p(t2))− f(p(t1)),

from the Fundamental Theorem of Calculus.

Note: If C is closed, the line integral over a gradient field vanishes. As a result, line integrals of
gradient fields are independent of the path C.

Remark: The line integral of a vector field is often called the work integral, since if F represents
a force, the integral represents the work done moving a particle between two points. If F = ∇f
for some scalar field f (often called the potential) then the work done moving the particle is inde-
pendent of the path taken. Moreover the work done moving a particle which returns to the same
position is zero. Such a force is called conservative.

E.g. The force due to gravity is F = (0, 0,−g) = ∇f if f = −gz and so gravity is a conservative
force.

3.3 Surface integrals of scalar and vector fields.

We now generalise 1D integrals to 2D integrals. We start with parametrisations of surfaces.

Defn: A path p(t), for t ∈ [t1, t2] is closed if p(t1) = p(t2). A closed path is simple it it does not
intersect with itself apart from at the end points t1, t2.

Defn: Let D ⊂ R
2, let ∂D represent the boundary of D (it should be a simple closed path) and

let D̄ be D ∪ ∂D.

Now define a map s : D̄ → R
3 s.t (u, v) 7→ s(u, v) and ∂s/∂u, ∂s/∂v are linearly independent on

D. A surface S ∈ R
3 is given in parametrised form by S = {s(u, v) | (u, v) ∈ D}.

E.g. Let
D = {(u, v) | u2 + v2 < R2}.

Then ∂D is the circle {(u, v) | u2+ v2 = R2} of radius R. Let s = (u, v,
√
R2 − u2 − v2), then S is

a hemispherical surface.

Note: this is not the only way to parametrise a hemisphere; could use spherical polars.

Defn: The integral of a scalar field f over a surface S is denoted by
∫

S

f(r) dS ≡
∫

S

f(r) |dS|

where dS = n̂dS and n̂ is a unit vector pointing out from S (a surface element is defined by its
size dS and a direction, n̂, being the normal to the surface). Now the two vectors

∂s

∂u
du,

∂s

∂v
dv
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lie in the tangent plane to the surface S and so the area of the elemental rhomboid dS in the
direction n̂ is, see Fig. ??,

dS = N(u, v)dudv, N(u, v) =
∂s

∂u
× ∂s

∂v

and so
∫

S

f(r) dS =

∫

D

f(s(u, v))|N| du dv.

Note: If S lies in the 2D plane, then s = (x(u, v), y(u, v), 0) is a mapping from 2D to 2D and so

|N| = ∂(x, y)

∂(u, v)

is the Jacobian of the map (easy to confirm). We know this from Calculus 1 (e.g. dxdy 7→ rdrdθ).

Defn: Let v be a vector field on R
3. The integral of v over S, is denoted

∫

S

v · dS ≡
∫

S

v · n̂ dS =

∫

D

v(s(u, v)) ·N(u, v) du dv,

as above.

Important remark: By analogy with line integrals, can show that the surface integral of a vector
field is independent of parameterisation up to a sign. The sign depends on the orientation of the
parameterisation, which is determined by the direction of the unit normal n̂ = N/||N||. Thus,
the direction of n̂, (or N) must be specified in order to fix the sign of the integral unambiguously.

E.g.

Let S be the surface given by
S = {(x, y, 0) | x2 + y2 ≤ 1},

and let the vector field be given by
B(r) = rẑ+ r̂.

Polar coordinates are a sensible parameterisation of S, i.e.

s(r, θ) = (r cos θ, r sin θ, 0),

so that D = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. Then

N =
∂s

∂r
× ∂s

∂θ
= rẑ,

(which is the Jacobian in this 2D mapping, ẑ normal to the 2D plane) and

∫

S

B · dS =

∫

2π

0

∫

1

0

B · ẑ rdrdθ =
∫

2π

0

∫

1

0

r2 dr dθ =
2π

3

and we have used r̂ · ẑ = 0.
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3.4 Stokes’ theorem

We now consider the case where the vector field v can be expressed as the curl of another vector
field, i.e. v = ∇×A. This frequently happens in applications.

Defn: The boundary of the surface S is denoted ∂S and, since it is mapped from the boundary
∂D, it inherits its properties, being a simple closed path. If c(t) ∈ R

2 is the simple closed path
along ∂D then

p(t) = s(c(t))

is the simple closed path along ∂S.

Important note: By convention, we choose an orientation of this curve according to the right-
hand rule. That is, point the thumb of your right hand on ∂S in the direction of N (or n̂) and
wrap your fingers round to indicate the sense of the integral.

Proposition: Let S be a surface in R
3 with boundary ∂S; let A be a vector field. Then

∫

S

∇×A · dS =

∫

∂S

A · dr, (17)

where dS and ∂S are consistently oriented according to the right-hand rule.

Before we give the outline proof of this important result, we give an example, which illustrates
the theorem at work.

3.4.1 Example:

Consider the hemisphere of radius R, whose boundary is the equator of the sphere, of radius R.
Let

f(r) = ω × r,

where ω is some fixed vector. On problem sheet 2, we have shown that ∇ × f = 2ω ≡
(2ω1, 2ω2, 2ω3).

Let us begin with the LHS hand side of (17). We calculate the surface integral using two different
parameterizations:

(i) Cartesian coordinates. As in a previous example, the surface can be parametrised by the
mapping s : D → R

3 where D = {(u, v) | u2 + v2 < R2} ⊂ R
2 and

s(u, v) = (u, v,
√
R2 − u2 − v2).

We also have ∂D = {(u, v) | u2+v2 = R2} ⊂ R
2, and its image is clearly ∂S = {(u, v, 0) | u2+v2 =

R2} ⊂ R
3.

Now

N(u, v) =
∂s

∂u
× ∂s

∂v
=

(

1, 0,− u

w

)

×
(

0, 1,− v

w

)

=
( u

w
,
v

w
, 1
)

,
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writing w =
√
R2 − u2 − v2, which is the z-coordinate on the sphere. Clearly, N points in the

direction of the outward normal r̂ = (u, v, w)/R. Then the surface integral is

∫

S

∇× f · dS =

∫

D

∇× f ·N(u, v) dudv

=

∫

u2+v2<R2

(

2ω1u

w
+

2ω1v

w
+ 2ω3

)

dudv =

∫

u2+v2<R2

2ω3 dudv

= 2πω3R
2.

(using the oddness of the first two components).

(ii) Using spherical polars, we parametrise the surface by

s(φ, θ) = (R sinφ cos θ, R sin φ sin θ, R cosφ),

with D = {(θ, φ) | 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π}. So now

N =
∂s

∂φ
× ∂s

∂θ
= hφhθφ̂× θ̂ = R2 sinφr̂,

(see earlier definition) so that

∫

S

∇× f · dS =

∫

D

∇× f ·R2 sinφr̂ dθdφ = 2R2

∫ π/2

0

∫

2π

0

sinφω · r̂dθdφ,

but
∫

2π

0

ω · r̂ dθ =

∫

2π

0

(ω1 sinφ cos θ + ω2 sinφ sin θ + ω3 cosφ) dθ = 2πω3 cosφ.

Thus, taken together,

∫

S

∇× f · dS = 4πR2ω3

∫ π/2

0

sinφ cosφ dφ = 2πR2ω3,

the same as before.

Now the RHS, the integral around ∂S. A parameterisation is p(θ) = (R cos θ, R sin θ, 0), 0 ≤ θ <
2π and, according to N and the RH-thumb rule we integrate in an anticlockwise direction. Now

∫

∂S

f · dr =
∫

2π

0

f · p′(θ) dθ,

and we have
p′(θ) == R(− sin θ, cos θ) = Rθ̂,

(in cylindrical polars) and on ∂S, p(θ) = R(cos θ, sin θ, 0) = Rr̂ so

f · θ̂ = R2 (ω × r̂) · θ̂ = R2ω ·
(

r̂× θ̂
)

= R2ω · ẑ = R2ω3.

using a vector triple product result. So now

∫

∂S

f · dr = R2ω3

∫

2π

0

dθ = 2πR2ω3,
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which confirms Stokes’ theorem !!

Figure 3: A number of rectangles (left) can be put together to cover the domain (right).

3.4.2 Outline proof of Stokes’ theorem (non-exam)

We first prove for a rectangle in (u, v)-space. The loose argument then proceeds that rectangles
can be assembled as a checkboard into larger domains, given that the limit of rectangle size can
be taken to go to zero and since contributions from adjacent sides cancel leaving just the circuit
around the total domain. See fig 3.
Let D = {(u, v) | 0 < u < a, 0 < v < b}. The surface S is defined by the map s(u, v) : D → R

3

The boundary ∂D = C1 ∪ C2 ∪ C3 ∪ C4 is mapped by s onto ∂S = ∂S1 ∪ ∂S2 ∪ ∂S3 ∪ ∂S4.

For e.g. C2 is the path p(t) = s(a, t), 0 < t < b and
∫

∂S2

A · dr =
∫ b

0

A(p(t)) · p′(t) dt =

∫ b

0

A(s(a, v)) · ∂s
∂v

(a, v) dv

Similarly,
∫

∂S4

A · dr = −
∫ b

0

A(s(0, v)) · ∂s
∂v

(0, v) dv

(the minus sign accounts for reversing the orientation of the segment C4, viz:

∫

0

b

= −
∫ b

0

)

Combining results gives
(
∫

∂S2

+

∫

∂S4

)

A.dr =

∫ b

0

(

A(s(a, v)) · ∂s
∂v

(a, v)−A(s(0, v)) · ∂s
∂v

(0, v)

)

dv

=

∫ b

0

∫ a

0

∂

∂u

(

A(s) · ∂s
∂v

)

du dv

by the FTC. We apply the same method to the side ∂S1 and ∂S3 and find
(
∫

∂S1

+

∫

∂S3

)

A.dr = −
∫ b

0

∫ a

0

∂

∂v

(

A(s) · ∂s
∂u

)

du dv

and so
∫

∂S

A.dr =

∫

D

(

∂

∂u

(

A(s) · ∂s
∂v

)

− ∂

∂v

(

A(s) · ∂s
∂u

))

dudv
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Concentrate on the integrand of the LHS. So

∂

∂u

(

A(s) · ∂s
∂v

)

− ∂

∂v

(

A(s) · ∂s
∂u

)

=
∂A(s)

∂u
· ∂s
∂v

− ∂A(s)

∂v
· ∂s
∂u

=
∂Ak

∂xj

(

∂xj

∂u

∂xk

∂v
− ∂xj

∂v

∂xk

∂u

)

=
∂Ak

∂xj
(δjlδkm − δjmδkl)

∂xl

∂u

∂xm

∂v

=
∂Ak

∂xj
ǫijkǫilm

∂xl

∂u

∂xm

∂v

=

(

ǫijk
∂Ak

∂xj

)(

ǫilm
∂xl

∂u

∂xm

∂v

)

= (∇×A) ·
(

∂s

∂u
× ∂s

∂v

)

= (∇×A) ·N(u, v)

Hence we have
∫

∂S

A.dr =

∫

D

(∇×A) ·N(u, v) dudv =

∫

S

(∇×A) · dS

as required. As mentioned earlier, we now “glue together” small rectangles to create the actual
domain we wish to cover. This can be done formally.

3.4.3 Green’s theorem in the plane

If Stokes’ theorem is applied on a 2D plane (i.e. S is ‘flat’) w.l.o.g. z = 0, then dS = ẑdS and
A = (A1(x, y), A2(x, y), 0) then we get

∫

S

(

∂A2

∂x
− ∂A1

∂y

)

dxdy =

∫

∂S

A · dr ≡
∫

∂S

A1 dx+ A2 dy

and ∂S is anticlockwise by the RHT rule.

3.5 Volume integrals

Just as for integrals over lines and surfaces, for integrals over volumes there is an analogue of the
Fundamental Theorem of Calculus, called Gauss’ theorem, or the divergence theorem.

3.5.1 Volume integrals of scalar fields

Let f : R3 → R s.t. r 7→ f(r) be a scalar field. Let V ⊂ R
3 have a boundary ∂V . If V is finite

and simply connected (all points within V are connected to all other points by cts paths which lie
entirely within V ), then ∂V forms a closed surface (a surface with no boundaries). The volume
integral of f is given by

∫

V

f(r) dV ≡
∫∫∫

f(x, y, z) dx dy dz

E.g.: if f = 1, then

∫

V

1 dV gives the physical volume of V .
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