Proposition: If we move to a different coordinate system, q = (q1, ¢2, g3) from r = (z,y, z) under
the mapping r : R* — R? s.t. q +— r(q) then
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where V; is mapped by r into V.

The scale factor is the Jacobian determinant of the mapping.

Proof: The elemental volume dxdydz is (zdz) - ((Xdzx) x (§dy)). Under the mapping, the mapped
volume is

[(Ashsdgs) - ((Qihidgr) x (G2hedy))| = |Jr| dg1dgadys.
If q, are orthonormal, then |J.| = hihohs.

Note: In R? lines and surfaces have directions, but volumes don’t. So there are no analogies to
line and surface integrals of vector fields. Instead ...

Defn: The Divergence theorem or Guass’ Theorem states that, for a vector field F : R? — R3,

/V~FdV:/ F-ndS = F . dS
1% v oV

where dS is a surface element and f points outwards from the volume V.

3.5.2 Outline proof of the divergence theorem

As in Stokes’ theorem, start with a proof for a cuboid
V={r|0<z<a0<y<b0<z<c}

The argument will be again that an arbitrary V' can divided into many small rectangular volumes
over each of which the divergence applies.

We write F = F1X + F5y + F3Z. Then it follows that

/avv S = /0 /Ob(vs(w,c) — v3(x,y,0)) dy dx
+/Oa /OC(UQ(:U, b,z) — vy(x,0,2))dzdx + /Ob /Oc(vl(a,y,z) —v1(0,y, 2)) dz dy.

(there are 6 sides, and the unit outward normal is one of £%, +¥, +Z depending on the cuboid side).

Next we consider the volume integral,
a b c F F )2
/V.dez/ / / <8 1, 0% 9 3) dz dy dx.
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The 3 terms are considered separately but in the same manner. For example, Consider the
contribution from 0F3/0z. From the Fundamental Theorem of Calculus,

/VV-FdV = /Oa /Ob(Fg(x,y,c) — Fy(x,y,0)) dy dz
/Oa /OC(FQ(J:, b,z) — Fy(x,0,2))dzdx + /Ob /Oc(Fl(a,y,z) — F1(0,y, 2)) dzdy,

The result is

which coincides with (18), thus confirming the theorem.

s
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Figure 4: Gauss’ theorem for the cuboid V. The top and bottom faces of the boundary, S; and
S, are indicated.

E.g. Let V be the ball of radius a about the origin, and let

v(r)=r+ f(r)z xr,

where 2 is the unit vector along the z-axis, and r = (2% + y? + 22)'/2. We’ll compute the volume
integral first. We have that

V.v=3+(Vf) (zZxr).
But

v L0,

and r - (zZ x r) =0, so that
V.v=3.

As the divergence of v is a constant, its integral over V' is just its value times the volume of V,
47
/ V. -vdV =3—"a® = 471a>.
v 3
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Next, we consider the surface integral. The sphere of radius a is parameterised by
r =s(¢,0) = a(singcosf,sinpsinf, cosp) =atr, 0<¢p<m 0<60<2r.

Then -
/Wv-ds:/o /0 v(r(¢,0)) - N(¢,0) do do.
We have that

Jr ~ Or .
90 ag, 0 a sin 0,
so that
N(¢,0) = a*sin ¢f.
Therefore,

v(r(¢,0)) - N(u,v) = (x(,0) + f(r(¢,0))2 x r(¢,0)) - a” sin o = a* sin ¢.

The surface integral is given by

s 2m
/ V-dS:/ / a®sin ¢ df dp = 4mwa?,
1% 0o Jo

and the divergence theorem is verified.

3.5.3 Green’s Identities

If F = Vf (ie. the vector field can be described by a scalar potential) then the divergence

theorem reads
/ Ade:/ n.VfdsS
1% v

IftF=gVf, g, f scalar fields then
/ Vg-Vf+gAde:/ g -V fdS
1% oV
subtracting the result of using F = fVg we have

/(gAf—ng) dv:/ (g8 -V f — [ Vg) dS
1%

)%

These can be very useful in deriving equations underlying physical applications.
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