
Proposition: If we move to a different coordinate system, q = (q1, q2, q3) from r = (x, y, z) under
the mapping r : R3 → R

3 s.t. q 7→ r(q) then

∫

V

f(r) dxdydz =

∫

Vq

f(r(q))

∣

∣

∣

∣

∂(x, y, z)

∂(q1, q2, q3)

∣

∣

∣

∣

dq1dq2dq3

where Vq is mapped by r into V .

The scale factor is the Jacobian determinant of the mapping.

Proof: The elemental volume dxdydz is (ẑdz) · ((x̂dx)× (ŷdy)). Under the mapping, the mapped
volume is

|(q̂3h3dq3) · ((q̂1h1dq1)× (q̂2h2dy))| = |J
r
| dq1dq2dq3.

If q̂α are orthonormal, then |J
r
| = h1h2h3.

Note: In R
3 lines and surfaces have directions, but volumes don’t. So there are no analogies to

line and surface integrals of vector fields. Instead ...

Defn: The Divergence theorem or Guass’ Theorem states that, for a vector field F : R3 → R
3,

∫

V

∇ · F dV =

∫

∂V

F · n̂ dS ≡

∫

∂V

F · dS

where dS is a surface element and n̂ points outwards from the volume V .

3.5.2 Outline proof of the divergence theorem

As in Stokes’ theorem, start with a proof for a cuboid

V = {r | 0 < x < a, 0 < y < b, 0 < z < c}.

The argument will be again that an arbitrary V can divided into many small rectangular volumes
over each of which the divergence applies.

We write F = F1x̂ + F2ŷ + F3ẑ. Then it follows that

∫

∂V

v · dS =

∫ a

0

∫ b

0

(v3(x, y, c)− v3(x, y, 0)) dy dx

+

∫ a

0

∫ c

0

(v2(x, b, z)− v2(x, 0, z)) dz dx+

∫ b

0

∫ c

0

(v1(a, y, z)− v1(0, y, z)) dz dy.

(there are 6 sides, and the unit outward normal is one of±x̂, ±ŷ, ±ẑ depending on the cuboid side).

Next we consider the volume integral,

∫

V

∇ · F dV =

∫ a

0

∫ b

0

∫ c

0

(

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

dz dy dx.
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The 3 terms are considered separately but in the same manner. For example, Consider the
contribution from ∂F3/∂z. From the Fundamental Theorem of Calculus,

∫ a

0

∫ b

0

∫ c

0

∂F3

∂z
dz dy dx =

∫ a

0

∫ b

0

(F3(x, y, c)− F3(x, y, 0)) dy dx.

The result is
∫

V

∇ · F dV =

∫ a

0

∫ b

0

(F3(x, y, c)− F3(x, y, 0)) dy dx

∫ a

0

∫ c

0

(F2(x, b, z)− F2(x, 0, z)) dz dx+

∫ b

0

∫ c

0

(F1(a, y, z)− F1(0, y, z)) dz dy,

which coincides with (18), thus confirming the theorem.

Figure 4: Gauss’ theorem for the cuboid V . The top and bottom faces of the boundary, S1 and
S2, are indicated.

E.g. Let V be the ball of radius a about the origin, and let

v(r) = r+ f(r)ẑ× r,

where ẑ is the unit vector along the z-axis, and r = (x2 + y2 + z2)1/2. We’ll compute the volume
integral first. We have that

∇ · v = 3 + (∇f) · (ẑ× r).

But

∇f =
f ′(r)

r
r,

and r · (ẑ× r) = 0, so that
∇ · v = 3.

As the divergence of v is a constant, its integral over V is just its value times the volume of V ,
∫

V

∇ · v dV = 3
4π

3
a3 = 4πa3.
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Next, we consider the surface integral. The sphere of radius a is parameterised by

r = s(φ, θ) = a(sinφ cos θ, sinφ sin θ, cosφ) = ar̂, 0 ≤ φ ≤ π, 0 ≤ θ < 2π.

Then
∫

∂V

v · dS =

∫ π

0

∫

2π

0

v(r(φ, θ)) ·N(φ, θ) dθ dφ.

We have that
∂r

∂φ
= aφ̂,

∂r

∂θ
= a sin φθ̂,

so that
N(φ, θ) = a2 sinφr̂.

Therefore,

v(r(φ, θ)) ·N(u, v) = (r(φ, θ) + f(r(φ, θ))ẑ× r(φ, θ)) · a2 sin φr̂ = a3 sinφ.

The surface integral is given by

∫

∂V

v · dS =

∫ π

0

∫

2π

0

a3 sinφ dθ dφ = 4πa3,

and the divergence theorem is verified.

3.5.3 Green’s Identities

If F = ∇f (i.e. the vector field can be described by a scalar potential) then the divergence
theorem reads

∫

V

△f dV =

∫

∂V

n̂.∇f dS

If F = g∇f , g, f scalar fields then

∫

V

∇g ·∇f + g△f dV =

∫

∂V

gn̂ ·∇f dS

subtracting the result of using F = f∇g we have

∫

V

(g△f − f△g) dV =

∫

∂V

(gn̂ ·∇f − f n̂ ·∇g) dS

These can be very useful in deriving equations underlying physical applications.
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