

MATH20901 Multivariable Calculus

Problems Class Week 4

1. [Exam 2012/13, Q2]

(a) (4 marks) Let $\mathbf{v}(x, y, z)$ be the vector field on \mathbb{R}^3 given by

$$\mathbf{v}(x, y, z) = (x \sin z, yz, \cos z).$$

Compute $\nabla \cdot \mathbf{v}$ and $\nabla \times \mathbf{v}$.

(b) Cylindrical coordinates are defined by

$$\mathbf{r}(r, \theta, z) = (r \cos \theta, r \sin \theta, z).$$

(i) (3 marks) Calculate the basis vectors $\hat{\mathbf{r}}$, $\hat{\theta}$, $\hat{\mathbf{z}}$.

(ii) (1 marks) Calculate the scale factors h_r , h_θ , and h_z .

(iii) (7 marks) Calculate $(\mathbf{u} \cdot \nabla) \mathbf{u}$ in cylindrical coordinates, where $\mathbf{u} = u_r \hat{\mathbf{r}} + u_\theta \hat{\theta} + u_z \hat{\mathbf{z}}$.

(c) (i) (6 marks) Let $f(r)$ be a smooth scalar-valued function of $r = |\mathbf{r}|$, and let $\mathbf{a} \in \mathbb{R}^3$ be a constant vector. Calculate

$$\nabla \times (\mathbf{r} \times \mathbf{a} f(r))$$

(ii) (4 marks) Let \mathbf{u} be a vector field in $C(\mathbb{R}^3, \mathbb{R}^3)$. Show that

$$\mathbf{u} \times (\nabla \times \mathbf{u}) = \frac{1}{2} \nabla (\mathbf{u} \cdot \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u}$$