

MATH20901 Multivariable Calculus

Problems Class Week 6

1. [Exam 2012/13, Q3(a,b,c)]

(a) (4 marks)

Let $\mathbf{v}(x, y) = (y^2, -xy)$ be a vector field on \mathbb{R}^2 , and let C be the part of the circle $x^2 + y^2 = 1$ that starts at $(1, 0)$ and ends at $(0, 1)$, oriented clockwise. Compute $\int_C \mathbf{v} \cdot d\mathbf{r}$.

(b) (4 marks)

Let S be the surface of the unit sphere, and let $\mathbf{F} = F_r \hat{\mathbf{r}}$ be a vector field where $\hat{\mathbf{r}} = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$ is the unit vector pointing radially outward from the sphere, where $0 \leq \phi \leq \pi$, and $0 \leq \theta \leq 2\pi$. Show that

$$\int_S \mathbf{F} \cdot d\mathbf{S} = \int_0^{2\pi} \int_0^\pi F_r \sin \phi d\phi d\theta.$$

(c) Let S be the surface in \mathbb{R}^3 given by the cone $z = (x^2 + y^2)^{1/2}$, $x^2 + y^2 \leq 1$. Let $\mathbf{v}(x, y, z)$ be the vector field given by

$$\mathbf{v}(x, y, z) = (z^2, xz, y^2)$$

(i) (8 marks) Without using Stokes theorem, compute $\int_S (\nabla \times \mathbf{v}) \cdot d\mathbf{S}$ where $d\mathbf{S}$ is oriented inward towards the z -axis.

(ii) (5 marks) Recalculate the surface integral from (i) by computing the line integral along an appropriate path.

2. [Exam 2013/14 Q3(a,b)]

(a) (5 marks) Let $f(\mathbf{r})$ be a scalar field and let C be a curve in \mathbb{R}^3 parameterised by the path $\mathbf{p}(s)$, $a \leq s \leq b$. Prove that

$$\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{p}(b)) - f(\mathbf{p}(a)).$$

(b) Consider a sphere of radius R about the origin, parameterized by

$$\mathbf{s}(\phi, \theta) = R(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi),$$

with the vector field $\mathbf{f} = (y, -x, z)$.

(i) (4 marks) Calculate the line integral

$$\int_C \mathbf{f} \cdot d\mathbf{r},$$

where C is the closed path along the equator going west (by convention, $\phi = 0$ is the north pole).

(ii) (5 marks) Verify Stokes' theorem by integrating a suitable vector field over the northern hemisphere.

(iii) (1 mark) What would the orientation of the surface be if the integration in (ii) had been over the southern hemisphere?