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1. (i) Is a linear map, and can easily be seen to satisfy the requirement of a linear map that
F(λx + µy) = λF(x) + µF(y). Equivalently, we can find a matrix A s.t. F(x) = Ax and here

A =





0 0 1
1 0 0
0 1 0





(ii) Satisfies F(λx) = λ2F(x) 6= λF(x) and is therefore not linear.

(iii) As in (i), linear, and

A =

(

1 0 1
0 1 1

)

2. (G ◦ F)(x) = G(−x2, x1) = (x1,− sin x2) and (F ◦G)(x) = F(x2, sin x1) = (− sin x1, x2).

3. (a) Simple matter of computing the partial derivatives. The matrix F′(x) is















∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

∂F3

∂x1

∂F3

∂x2















=





2x1x2 x2
1

cos(x1 + x2) cos(x1 + x2)
x2e

x1x2 x1e
x1x2





(b) From the definition, remembering we need to normalise v so v̂ = (1, 2)/
√
5 and

DvF(x) =
d

dt

(

(x1 + t/
√
5)2(x2 + 2t/

√
5), sin(x1 + x2 + 3t/

√
5), e(x1+t/

√
5)(x2+2t/

√
5)
)

∣

∣

∣

∣

t=0

=
1√
5

(

2x1x2 + 2x2
1, 3 cos(x1 + x2), (x2 + 2x1)e

x1x2

)

.

(c) Using x = (1, 1) in part (b) gives DvF(x) = (4, 3 cos 2, 3e)/
√
5, while x = (1, 1) in (a) gives

F′(1, 1)v̂ =





2 1
cos 2 cos 2
e e





(

1/
√
5

2/
√
5

)

=





4/
√
5

(3 cos 2)/
√
5

3e/
√
5





The two results agree, as required.

4. (a) From the Chain rule (see notes),

H′(x) = G′(F(x))F′(x).
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Thus,
H′(1, 1) = G′(F(1, 1))F′(1, 1).

We have that (see notes)

F′(x) = A =





1 2
2 1
1 0



 .

Also,

F(1, 1) =





1 2
2 1
1 0





(

1
1

)

=





3
3
1



 .

Now we have G(x) = (x1x2, x2x3, sin(x1x2x3)) ≡ (G1, G2, G3) so

G′(x) ≡







∂G1

∂x1

∂G1

∂x2

∂G1

∂x3

∂G2

∂x1

∂G2

∂x2

∂G2

∂x3

∂G3

∂x1

∂G3

∂x2

∂G3

∂x3







=





x2 x1 0
0 x3 x2

x2x3 cos(x1x2x3) x3x1 cos(x1x2x3) x1x2 cos(x1x2x3)



 .

OK, so we already have F(1, 1) = (3, 3, 1), so we get

G′(F(1, 1)) = G′(3, 3, 1) =





3 3 0
0 1 3

3 cos 9 3 cos 9 9 cos 9



 .

Then

H′(1, 1) = G′(F(1, 1))F′(1, 1)

=





3 3 0
0 1 3

3 cos 9 3 cos 9 9 cos 9









1 2
2 1
1 0



 =





9 9
5 1

18 cos 9 9 cos 9



 .

(b) We have that, for x = (x1, x2),

F(x) = Ax =





1 2
2 1
1 0





(

x1

x2

)

=





x1 + 2x2

2x1 + x2

x1





Then

H(x) = G(F(x)) = G(x1 + 2x2, 2x1 + x2, x1)

= ((x1 + 2x2)(2x1 + x2), (2x1 + x2)x1, sin((x1 + 2x2)(2x1 + x2)x1))
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and we write H ≡ (H1, H2, H3). Then

H′(x) =







∂H1

∂x1

∂H1

∂x2

∂H2

∂x1

∂H2

∂x2

∂H3

∂x1

∂H3

∂x2







=









4x1 + 5x2 4x2 + 5x1

4x1 + x2 x1

(6x2
1 + 10x1x2 + 2x2

2)× (4x2x1 + 5x2
1)×

cos((x1 + 2x2)(2x1 + x2)x1) cos((x1 + 2x2)(2x1 + x2)x1)









.

Urgh ! Now we put in x = (1, 1) and we find the same answer as at the end of part (a).

5. Here, F(x, y) = (x3 + ey, cosx+ xy) and so

F′(x) =

(

3x2 ey

− sin x+ y x

)

is the Jacobian matrix. Its determinant is just

JF = 3x3 + ey(sin x− y)

and this clearly vanishes where (x, y) = (0, 0). So the relation F(x) = s where s = (s, t) is
not invertible, according to the notes at (x, y) = (0, 0) and a unique solution is therefore not
guaranteed there.

6. Use Taylor’s theorem (notes). So first F(1, 2) = (5, 9). Next,

F′(x) =

(

2x 2y
1− y3/x2 3y2/x

)

So
F(x) = F(1, 2) + F′(1, 2)(x− (1, 2)) + h.o.t.

if x is close to (1, 2) the higher order terms are small and so

F(x) ≈ (5, 9)T +

(

2 4
−7 12

)(

x− 1
y − 2

)

and then you’re almost there (note: error on original Q sheet, 2y should be 12y)

7. Call the first equation F1(x, y, u, v) = 0 and the second F2(x, y, u, v) = 0. For the system to be
uniquely determined near a point the determinant of the Jacobian matrix







∂F1

∂u

∂F1

∂v
∂F2

∂u

∂F2

∂v






=

(

−2uy 2v
yv

u2
− 3 −y

u

)

evaluated at (x, y, u, v) = (2, 1, 1,−1) must be non-vanishing. Using these values in the above
gives a determinant of −6.
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Why is this ? Well, since u = u(x, y) and v = v(x, y) by the chain rule we have for example

∂F1

∂x
+

∂F1

∂u

∂u

∂x
+

∂F1

∂v

∂v

∂x

and so on. The four equations that result can be arranged as the matrix equation









∂F1

∂x

∂F1

∂y
∂F2

∂x

∂F2

∂y









+







∂F1

∂u

∂F1

∂v
∂F2

∂u

∂F2

∂v















∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y









= 0

and this gives

(

2x 2y − u2

y2 2xy − v

u

)

+

(

−2uy 2v
yv

u2
− 3 −y

u

)









∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y









= 0

so evaluating these at (x, y, u, v) = (2, 1, 1,−1) and inverting to get the derivatives requires the
determinant of the Jacobian previous computed to be non-zero. If we do this numerical task
we find the unknown ∂v/∂y = −1.

8. (a) First

r′(r, φ, θ) =





sinφ cos θ r cosφ cos θ −r sinφ sin θ
sinφ sin θ r cos φ sin θ r sin φ cos θ
cosφ −r sinφ 0.





(b) The Jacobian is

Jr ≡ det(r′) ≡ ∂(x, y, z)

∂(r, φ, θ)
=

∣

∣

∣

∣

∣

∣

sinφ cos θ r cos φ cos θ −r sinφ sin θ
sin φ sin θ r cosφ sin θ r sinφ cos θ
cosφ −r sin φ 0

∣

∣

∣

∣

∣

∣

= ... = r2 sinφ.

We can solve (r, φ, θ) in terms of (x, y, z) everywhere except where the Jacobian determinant
vanishes. This happens when sinφ = 0 or when φ = 0, φ = π which are the polar axes, or
r = (0, 0,±r) which is the z-axis.

9. (a) First, clear to see that f is continuous if x 6= 0, since the numerator and denominator are
both continuous and the denominator is non-vanishing.

(b) Let the path x = y3 be parametrised by x = t3, y = t. Then

lim
t→0

f(x(t)) =
t6

t6 + t6
=

1

2

and this isn’t the same as f(0, 0) = 0. So discontinuous.
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