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1. (a) δijδij = δjj = n using the rule δijci = cj.

(b) (ABTC)ij = AilBklCkj ≡

p
∑

l=1

q
∑

k=1

AilB
T
lkCkj and BT

lk = Bkl, observing that A has p columns,

and C has q rows.

2. A generalisation of the notes to a non-normal basis. We start with x = cjej . Now, take the
inner product with ek and we have x · ek = cjej · ek = cjδjk|ej|

2. And so

ck =
x · ek
|ej |2

, whence x =
(x · ek)ek

|ej|2

This concept can be extended to infinite dimensional space, where vectors become functions.
Thus arbitrary functions can be expanded in exactly the same way in terms of sets of basis
functions – a branch of mathematics called ‘functional analysis’ briefly touched on in the
APDE2 course.

If ei are non-orthogonal then you can still proceed as before to get x · ek = cjej · ek but you
can’t introduce the Kronecker delta any more. But you can still write down a matrix system
for the unknowns, cj :











e1 · e1 e2 · e1 . . .
e1 · e2 e2 · e2 . . .

...
. . .

em · em





















c1
c2
...
cm











=











x · e1
x · e2
...

x · em











which you can invert (in principle) to find the cj.

3. (a) ∇f(r) = (−y sin(xy),−x sin(xy)− z sin(yz),−y sin(yz)). So

∇×∇f =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂x ∂y ∂z
−y sin(xy) −x sin(xy)− z sin(yz) −y sin(yz)

∣

∣

∣

∣

∣

∣

= (− sin(yz)− yz cos(yz) + sin(yz) + yz cos(yz))x̂+ . . . = 0

Has to be so, as proved in notes for any f .

(b) ∇ · u = sin z + z − sin z = z.

(c)

∇× v =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂x ∂y ∂z
ayz bzx cxy

∣

∣

∣

∣

∣

∣

= ((c− b)x, (a− c)y, (b− a)z).

Then ∇ · (∇× v) = (c− b) + (a− c) + (b− a) = 0 as required from the proof in the notes.
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4. (a) Here f = a · r and a = (a1, a2, a3), r = (x1, x2, x3) so f = ajxj and

[∇f ]i =
∂

∂xi

(ajxj) = ajδij = ai; thus ∇f(r) = a.

(b) First, r = |r| =
√

x2 + y2 + z2 so ∇r = (x, y, z)/r = r/r. Next

v = ∇rn = nrn−1∇r = nrn−2r

Continuing, we have

∇ · v =
∂vi
∂xi

=
∂

∂xi

(nxir
n−2) = n

∂xi

∂xi

rn−2 + nxi

(

(n− 2)xir
n−4

)

= 3nrn−2 + n(n− 2)r2rn−4

after using the first differentiation result again for the second term of the product. So

∇ · v = n(n+ 1)rn−2

which vanishes for n = 0 and n = −1, provided r 6= 0. We had to expect that n = 0 was one
solution as r0 = 1.

(c) Here v = ω × r, ω = (ω1, ω2, ω3) and r = (x1, x2, x3). The ith component of the curl is

[∇× v]i = ǫijk
∂

∂xj

vk = ǫijk
∂

∂xj

ǫklmωlxm = ǫijkǫklmωl

∂xm

∂xj

= ǫijkǫklmωlδjm = ǫimkǫklmωl

= ǫkimǫklmωl = (δilδmm − δimδml)ωl = (3δil − δil)ωl = 2ωi.

So we have ∇× v = 2ω.

5. (a)(i) Similar to 4(c) above, but we also have ∇r = r/r or

∂r

∂xi

=
xi

r

The i component is

[∇× (r× af(r))]i = ǫijk
∂

∂xj

ǫklmxlamf(r) = ǫkijǫklm

(

∂xl

∂xj

amf(r) + xlam
xj

r
f ′(r)

)

= ǫkijǫklm

(

δljamf(r) + am
xlxj

r
f ′(r)

)

= (δilδjm − δimδjl)
(

δljamf(r) + am
xlxj

r
f ′(r)

)

= aif(r)− δjjaif(r) + aj
xixj

r
f ′(r)− ai

x2

j

r
f ′

=
[

−a(2f(r) + rf ′(r)) + r
a · r

r
f ′(r)

]

i

and so
∇× (r× af(r)) = −a(2f(r) + rf ′(r)) + r

a · r

r
f ′(r).

(a)(ii) Same tricks as above, slightly easier now

[∇ · af(r)]i =
∂

∂xi

(aif(r)) = ai
∂f

∂xi

= ai
xi

r
f ′(r)
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using (a)(i). So ∇ · af(r) =
a · r

r
f ′(r).

(b)

[u× (∇× u)]i = ǫijkujǫklm
∂

∂xl

um = (δilδjm − δimδjl) uj

∂

∂xl

um

= um

∂

∂xi

um − ul

∂

∂xl

ui =
∂

∂xi

(

1

2
u2

m

)

− ul

∂

∂xl

ui =
(

1

2
∇u2 − [u ·∇)u

]

i
,

which is the ith component of u× (∇× u) = 1

2
∇(u · u)− (u ·∇)u.

6. (a) ∇ · (fv) =
∂

∂xi

(fvi) = f
∂vi
∂xi

+ vi
∂f

∂xi

= f∇ · v + v ·∇f

(b) This is just part (a) with v = ∇g and the only thing to note here is that ∇ ·∇g = ∆g,
the Laplacian of g.

(c) Take the ith component of the LHS:

[∇× (fv)]i = ǫijk
∂

∂xj

(fvk) = ǫijkf
∂vk
∂xj

+ ǫijk
∂f

∂xj

vk = f [∇× v]i + [∇f × v]i

7. On the LHS if you switch over u and v, by the definition of the cross product you will introduce
a minus sign. However the RHS is symmetric in u and v and so switching them over will give
the same result. So it cannot be true as stated. Here’s the derivation.

∇ · (u× v) =
∂

∂xi

(ǫijkujvk) = ǫijk

(

uj

∂vk
∂xi

+ vk
∂uj

∂xi

)

= −ujǫjik
∂vk
∂xi

+ vkǫkij
∂uj

∂xi

= −u · (∇× v) + v · (∇× u)

In the above we have used the cyclic definition of ǫijk.

8. Similar to above

[∇× (u× v)]i = ǫijk
∂

∂xj

(ǫklmulvm) = ǫkijǫklm

(

ul

∂vm
∂xj

+ vm
∂ul

∂xj

)

= (δilδjm − δimδjl)

(

ul

∂vm
∂xj

+ vm
∂ul

∂xj

)

= ui

∂vj
∂xj

+ vj
∂ui

∂xj

− uj

∂vi
∂xj

− vi
∂uj

∂xj

= (∇ · v)ui + (v ·∇)ui − (u ·∇)vi − (∇ · u)vi

So we match up each suffix to give the vector result

9. (a) Here F = −ρgẑ = ∇φ. So

φx = 0, φy = 0, φz = −ρg

Integrating each up gives φ(x, y, z) = f1(y, z), φ(x, y, z) = f2(x, z) and φ(x, y, z) = −ρgz +
f3(x, y) where f1, f2, f3 are arbitrary functions. In fact, the only way this can resolve itself is if
f1 = f2 = f3 = C a constant. So, in general φ = −ρgz + C.
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(b) You do this in Fluids 3. We have

∂u

∂t
+ (u ·∇)u = −

1

ρ
∇p+∇φ

after using part (a). Using Q3(b) we have

∂u

∂t
+

1

2
∇(u · u)− u× (∇× u) = −

1

ρ
∇p+∇φ

Taking the curl, noting that ∇×∇f = 0 for any scalar f , and defining ω = ∇× u we have

∂ω

∂t
+∇× (u× ω) = 0

Now using Q6, we can write

∂ω

∂t
− (∇ · ω)u+ (∇ · u)ω − (ω ·∇)u+ (u ·∇)ω = 0

Finally, since ∇ · u = 0 and ∇ · ω = ∇ ·∇× u = 0, we can write

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u

(c) If u = (u1(x, y), u2(x, y), 0), then ω = (∂xu2−∂yu1)ẑ and both (ω·∇)u = 0 and (u·∇)ω = 0.
Which means that ∂tω = 0 and so ω is constant.

10. Using result (i) in the question we can write Navier’s equation as

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u)

Now taking the divergence of this and using result (iii) on the last term to eliminate it gives

ρ
∂2

∂t2
(∇ · u) = (λ+ 2µ)∆(∇ · u)

and letting φ = ∇ · u and c2
1
= (λ+ 2µ)/ρ we have the set equation.

Now take the curl and let H = ∇× u we can eliminate the first term on the RHS to leave

ρ
∂2

∂t2
H = µ∇×∆u = −µ∇× (∇×H)

once results (i), (ii) are used. We need one more result, given in §2.3.1 of the notes

∇× (∇×H) = ∇(∇ ·H)−∆H)

and since H = ∇× u the first term is zero. Hence we have

ρ
∂2

∂t2
H = µ∆H

as required with c2
2
= µ/ρ.

The reduction of Navier’s equation to these two decoupled equations is very important in the
study of Seismology as they represent wave equations for the dilation (or compressible) and
rotational components of displacements in a solid. The factors c1 and c2 are wave speeds (see
APDE2) and clearly c1 > c2. This means compression waves travel faster than rotational waves.
In Siesmology the two waves and called P and S waves – the P is for primary (because they
arrive first) and the S for secondary.
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