MATH20901 Multivariable Calculus: Solutions 3

1. (a) From the notes the definition of the derivative of the map r(q) is
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where [q,]; is the ith component of ath basis vector. This uses q, = (1/hy)0r/dq, where
r=(z,y,2).
(b) Note that (AB)™' = B7'A~! and that the inverse of a diagonal matrix is the matrix of

reciprocals on the diagonal. Also, since the q are normalised and orthogonal to one another,
the matrix made up of them is orthonormal and therefore its inverse is equal to its transpose.

Thus
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The result follows after using q, = (1/hs)0r/0q, again

(c) The first thing to note is that (r'(q))~! = q'(r) (the inverse of the derivative is the derivative
of the inverse and here q(r) denotes the inverse map), from the notes on inverse maps in Chapter
1. Which means to say that
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In spherical coordinates, q = (7, ¢,0) and so g2 = ¢ and we therefore want the (2,2) entry of
the matrix above which is the same as the (2, 2) entry of the matrix in part (b). Hence
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using the definition of the map in spherical polars, y = rsin¢sinf and hy = 7.
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2. (a) From notes, we have r(r, ¢,0) = (rsin ¢ cosd,rsin ¢ sin, r cos ¢), it follows that

0

0_: = (sin ¢ cosf,sin ¢sinf, cos p), h, =1

g—; = (rcos¢cosf,rcosgsing, —rsing), hy =r,
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0 (—rsingsind, rsin ¢ cosd,0), hg = rsin .

Thus the local basis vectors are

I = (sin ¢ cos @, sin ¢ sin 0, cos ¢),
¢ = (cos ¢ cos b, cos ¢ sin B, — sin ¢),
6 = (—sinf,cos6,0).

(b) From the basis vectors in spherical coordinates, one finds that

g—; = (cos ¢ cos B, cos psin b, — sin ¢) = o, g—(z = (—singcosf, —sin psinf, — cos ) = —f
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(c) Can do this two ways. First, we can remember the formula derived in the notes, and
substitute in the scale factors directly to give
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Or, if we can’t be bothered to remember the formula, we can calculate the divergence directly
from the definition of the gradient, which is easy to remember in terms of scale factors. Then
you get
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We need to substitute in from part (b). Some of the terms are zero (e.g. 0f/0r = 0 from
the definitions of the basis vectors) and others are zero because of orthogonality of the basis



vectors. So
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and we have used all of the relations established in part (b).
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The two answers are the same and are expanded out as
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(d) Use formula derived in the notes. So
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Or you could calculate it directly using the definition of the gradient as a vector and u. It’s
Very messy.

(e) The Laplacian is A f = V-u where (u,, ug, up) =u =V f = (f,, fo/r, fo/(rsin ¢)) according
to the lecture notes. So using the (unexpanded) definition of the divergence from part (c) we
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after simplifying where we can.
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. (a) We know from lectures Or/0x; = x;/r... so
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using Ox;/0r; = 3, x7 = r? and so on. This is the same as Q2(e) when f = f(r) —ie. f
independent of 6 and ¢. Which is a relief.

(b) There are two ways of doing this. The first is indirect. We start with
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Now from Problem Sheet 2, Q4(b), we know A(r~!) = 0. Also, A(p-v) = - Av since p is
constant. Thus

A (M) = Ap-V G) = —p - V(AGrY)) =0
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The second way is a more obvious approach.
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4. (a) If p is constant then we can combine the two equations as
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and this is an ellipse centred on the origin with semi-major/minor axes a cosh p and asinh .

Similarly, if v is constant, we write
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which are equations of hyperbolae centred on the origin.

(b) So we have (x,y) = r(u,v) = (acosh pcosv, asinh psinv) and so
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which means ]
o = —(asinh pcosv, acosh usinv),

I

h, = a\/sinh2 pcos? v + cosh? pusin? v = a\/sinh2 prcos® v+ (1 + sinh? p1) sin® v

which gives the answer. Similarly,
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U= h—(—a cosh p sin v, a sinh p cos v)

h, = a\/cosh2 psin? v + sinh? jicos? v = a\/(l + sinh? ;1) sin? v 4 sinh? y1 cos? v
Finally,

A

ft - ¥ = a*(— cosh psinh p cos v sin v + cosh psinh p cos vsinv) = 0
so they are orthogonal.

(c¢) The Jacobian determinant is
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(for an orthogonal system, the Jacobian determinant is always the product of the scale factors).
The map is inviertible if and only if J(r) # 0. It is zero when = 0 and v = 0, 7. So there are
two points in the domain at (z,y) = (+a,0) where the map is singular.

(d) Following notes, we have
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(e) According to the formula derived in class for the divergence of a vector u = w, ft + u, v
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and with (u,,u,) = V f from part (d) we have
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That’s not so bad. In fact, it’s arguably tidier even than cylindrical polar coordinates.

. (a) We go like this:

A(fg)=V -V (fg)=V-(fVg+gV[)=fV-Vg+Vf-Vg+Vg-V[f+gV-Vf

and then we’re done.

(b) We have that Vr? = 2rVr = 2rr/r = 2r. Then Ar? = V - (2r) = 4 since r = (z,y,0).
Also Vlog(r) = (1/r)Vr =r/r% So

Allogr) =V - (v/r?) = (1/r>)V v +1-V(1/r?) =2/r* — (2/r*)r - Vr = (2/r?) — (2r - 1) /r*
which is zero since r - r = r2. Using part (a) we have

r-r
A(r*logr) = 4logr+47 +0=4+4logr

(c) A%(r?logr) = A(4 + 4logr) = 0 since we've already shown A(logr) = 0.



