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1. We have that

L =

∫

C

|dr| =
∫

2π

0

|p′(t)|dt

under parametrisation and p′(t) = a(1− cos t, sin t, 0) so

L = a

∫

2π

0

√
2− 2 cos t dt = a

∫

2π

0

√

4 sin2(t/2) dt = 4a [− cos(t/2)]2π
0

= 8a

So the nail travels exactly 4 diameters of the wheel. If the wheel were not moving along the
ground, i.e. only rotating, the nail would travel π diameters (the circumference of the wheel).
So it actually doesn’t go much further on account of its translation.

2. The curve C is a helix with an axis coinciding with the z-axis. We have that

∫

C

v · dr =
∫

1

0

v(p(t)) · p′(t) dt.

where p(t) is the path along the curve and

p′(t) =
(π

2
cos

(π

2
t
)

,−π

2
sin

(π

2
t
)

, 1
)

,

whilst
v(p(t)) =

(

sin
(π

2
t
)

, sin
(π

2
t
)

cos
(π

2
t
)

, sin
(π

2
t
)

cos
(π

2
t
)

t
)

.

Substituting, we get

∫

C

v · dr =
∫

1

0

(π

2
sin

(π

2
t
)

cos
(π

2
t
)

− π

2
sin2

(π

2
t
)

cos
(π

2
t
)

+ sin
(π

2
t
)

cos
(π

2
t
)

t
)

dt.

The first two terms in the integrand above may be integrated easily (longhand by substitution
u = sin(πt/2) if you need to) to obtain

[

1

2
sin2

(π

2
t
)

− 1

3
sin3

(π

2
t
)

]1

0

=
1

6
.

The last term needs integration by parts:

∫

1

0

sin
(π

2
t
)

cos
(π

2
t
)

t dt =
1

2

∫

1

0

sin(πt)t dt =

[

− t

2π
cos(πt)

]1

0

+
1

2π

∫

1

0

cos(πt) dt =
1

2π
.

Therefore,
∫

C

v · dr = 1

6
+

1

2π
.
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3. Here dS = |n̂dS| and we have (x, y) = s(r, θ) = (ra cos θ, rb sin θ) and D = {(r, θ) | 0 < r <
1, 0 < θ < 2π} which means

n̂dS =
∂s

∂r
× ∂s

∂θ
drdθ =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

a cos θ b sin θ 0
−ra sin θ rb cos θ 0

∣

∣

∣

∣

∣

∣

drdθ = rab drdθẑ

So the area of the ellipse is

∫

S

dS =

∫

D

|rabẑ| drdθ = 2πab

∫

1

0

rdr = πab In this map of a 2D

surface to a 2D surface, we not that the factor rab is just the Jacobian determinant.

4. There are 4 segments to the square: (i) on the path from (0, 0) to (0, l), y = 0 and dr = dxx̂;
(ii) on the path from (0, l) to (l, l) x = l and dr = dyŷ; (iii) on the path from (l, l) to (l, 0),
y = l and dr = dxx̂; (iv) on the path from (l, 0) to (0, 0), x = 0 and dr = dyŷ. So we have

∫

C

F · dr =

∫ l

0

(0, 0, 0) · x̂dx+

∫ l

0

(−l2y, ly2, 0) · ŷdy +
∫

0

l

(−x2l, xl2, 0) · x̂dx+

∫

0

l

(0, 0, 0) · ŷdy

= 0 + l

∫ l

0

y2dy + l

∫ l

0

x2dx+ 0 =
2l4

3

5. (a) See figure. The plane x + y + z = 1 intersects with the plane y = 0 along the straightline
segment C1 = {y = 0, z = 1 − x}, with the plane z = 0 along C2 = {z = 0, y = 1 − x} and
with the plane x = 0 along C3 = {x = 0, z = 1− y}.
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(b) Need to parametrise the curve C. Do each line segement individually and make sure each
segment is oriented in the same sense. So, C1, C2, C3 are described (respectively) by the three
paths

p1(t) = (t, 0, 1− t), p2(t) = (1− t, t, 0), p3(t) = (0, 1− t, t)

each holding for 0 < t < 1. So

p′

1
(t) = (1, 0,−1), p′

2
(t) = (−1, 1, 0), p′

3
(t) = (0,−1, 1)

First,
∫

C1

F · dr =
∫

1

0

(t2(1− t), 0, (1− t)2) · (1, 0,−1) dt =

∫

1

0

(−t3 − 1 + 2t) dt = −1

4

Next,
∫

C2

F · dr =
∫

1

0

(0, t2(1− t), 0) · (−1, 1, 0) dt =

∫

1

0

(t2 − t3) dt = 1

3
− 1

4
=

1

12
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Finally,
∫

C3

F · dr =
∫

1

0

(0, 0, t2) · (0,−1, 1) dt =

∫

1

0

t2 dt =
1

3

Since the curves are all oriented clockwise, we sum over each contribution to give
∫

C

F · dr = −1

4
+

1

12
+

1

3
=

1

6

(c) Now the surface integral. Any surface with edges coinciding with the closed curve C will
do. Make sense to use the plane x+ y + z = 1. We want to parametrise the curve so we use

D = {(u, v) | 0 < v < 1− u, 0 < u < 1}
and write (x, y, z) = s(u, v) = (u, v, 1−u−v) (this is just the projection of the slanted triangular
section onto the x, y-plane). So

N =
∂s

∂u
× ∂s

∂v
=

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

1 0 −1
0 1 −1

∣

∣

∣

∣

∣

∣

= x̂+ ŷ + ẑ

Next,

∇× F =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂x ∂y ∂z
x2z xy2 z2

∣

∣

∣

∣

∣

∣

= x2ŷ + y2ẑ

Then
∫

S

∇× F · dS =

∫

D

(u2ŷ + v2ẑ) · (1, 1, 1) dudv =

∫

1

0

∫

1−u

0

u2 + v2 dv du

=

∫

1

0

[

u2v +
v3

3

]1−u

0

du = u2(1− u) +
(1− u)3

3
du =

[

u3

3
− u4

4
− (1− u)4

12

]1

0

=
1

3
− 1

4
+

1

12
=

1

6

The same as part (b) by Stokes’ theorem.

(d) If F = (yz, xz, xy) then we see that F = ∇(xyz) and hence ∇×∇(xyz) = 0 by an identity.
Hence the integral calculated in (c) is zero and (b) is zero also by Stokes’ theorem.

6. (a) Since the curve C can be projected onto the unit circle in the (x, y)-plane we parametrised
by writing

p(t) = (cos t, sin t, 2− sin t), 0 < t < 2π

Then F(p(t)) = (− sin2 t, cos t, (2− sin t)2), whilst p′(t) = (− sin t, cos t,− cos t) and so
∫

C

F · dr =

∫

2π

0

(− sin2 t, cos t, (2− sin t)2) · (− sin t, cos t,− cos t) dt

=

∫

2π

0

(

− sin3 t+ cos2 t− cos t(2− sin t)2
)

dt

=

∫

2π

0

(

− sin t(1− cos2 t) +
1

2
+

1

2
cos 2t− cos t(2− sin t)2

)

dt

=

[

cos t− cos3 t

3
+

t

2
+

sin 2t

4
+

(2− sin t)3

3

]2π

0

= π

3



(could have spotted that only the cos2 t counts to this integral and made the calculation shorter.)

(b) We project the surface onto the unit circle in to (x, y)-plane so define D = {(r, θ) | 0 < r <
1, 0 < θ < 2π} and define the surface S with

s(r, θ) = (r cos θ, r sin θ, (2− r sin θ))

Then

N =
∂s

∂r
× ∂s

∂θ
=

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

cos θ sin θ − sin θ
−r sin θ r cos θ −r cos θ

∣

∣

∣

∣

∣

∣

= rŷ + rẑ

Easy to show (follow answer to Q5(c)) that ∇× F = (1− 2y)ẑ = (1− 2r sin θ)ẑ. So

∫

S

∇× F · dS =

∫

D

r(1− 2r sin θ) dr dθ =

∫

2π

0

∫

1

0

(r − 2r2 sin θ) dr dθ = π +
2

3
[cos θ]2π

0
= π

Same as (a) by Stokes’ theorem.

7. Given D we have

∫

D

(

∂g

∂x
− ∂f

∂y

)

dx dy =

∫ d

c

∫ b

a

∂g

∂x
dx dy −

∫ b

a

∫ d

c

∂f

∂y
dy dx

=

∫ d

c

[g(x, y)]x=b

x=a dy −
∫ b

a

[f(x, y)]y=d

y=c dx

=

∫ d

c

g(b, y) dy +

∫ c

d

g(a, y) dy +

∫ b

a

f(x, c) dx+

∫ a

b

f(x, d) dx

after reversing the limits to absorb minus signs. We see that the four integrals circumnavigate
the edge of the rectangle in an anticlockwise sense.

In other words
∫

D

(

∂g

∂x
− ∂f

∂y

)

(x, y) dx dy =

∫

∂D

(f, g) · dr =
∫

∂D

f dx+ g dy.

8. Two ways of doing this: (i) We note that f∇g + g∇f = ∇(fg) and since ∇ × ∇(fg) = 0
regardless of f, g then

∫

C

∇(fg) · dr =
∫

S

∇×∇(fg) · dS = 0

(ii) We parametrise C by p(t), t1 < t < t2 and p(t1) = p(t2) since C is closed and so

∫

C

∇(fg)·dr =
∫ t2

t1

∇(fg)(p(t))·p′(t) dt =

∫ t2

t1

d(fg)

dt
(p(t)) dt = (fg)(p(t2))−(fg)(p(t1)) = 0

which is the fundamental theorem of calculus, as in the notes.
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