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1. Stokes’ theorem is

∫

S

(∇× v) · dS =

∫

C

v · dr.

(i) The surface integral over the hemisphere. This is best described using a polar coordinate
parametrisation (but there are other ways), so we let D = {(r, θ) | 0 < r < 3, 0 < θ < 2π} and
describe the surface S using

(x, y, z) = s(r, θ) = (r cos θ, r sin θ,
√
32 − r2)

Then we have

∂s

∂r
=

(

cos θ, sin θ,− r

(9− r2)1/2

)

,
∂s

∂θ
(r, θ) = (−r sin θ, r cos θ, 0) .

and so

N(r, θ) =
∂s

∂r
× ∂s

∂θ
=

(

r2 cos θ

(9− r2)1/2
,

r2 sin θ

(9− r2)1/2
, r

)

.

The curl of v is given by ∇× v = (0, 0,−2). So (∇× v) ·N(r, θ) = −2r and

∫

S

∇× v · dS =

∫

D

−2r drdθ = −2

∫

2π

0

∫

3

0

rdrdθ = −18π.

(ii) The integral around the boundary. Here p(θ) = s(3, θ) = (3 cos θ, 3 sin θ, 0), 0 < θ < 2π.
Then p′(θ) = (−3 sin θ, 3 cos θ, 0) whilst v(p(θ)) = (3 sin θ, 3 cos θ, 0) so

∫

∂S

v · dr =
∫

2π

0

v(p(θ)) · dp
dθ

dθ =

∫

2π

0

(−9 sin2 θ − 9 cos2 θ) dθ = −18π.

2. From the defintion, F = (fx, fy, 0) and dr = dxx̂ + dyŷ+ dzẑ so

∫

C

F · dr =
∫

C

fxdx+ fydy =

∫

D

(−fxy + fxy)dxdy = 0

where D is the area enclosed by C and we have simply used Green’s theorem in the plane. Of
course, this result is proved via other means in the lectures.

3. The integral is

∫

C

(−x2y, xy2, 0) · dr where C is a square of length l with one vertex on (0, 0).

According to Solution Sheet 4, Q4, the value of the integral is 2l3/3. We can calculate this
integral using Green’s theorem in the plane so that the value is

∫

D

−∂(−x2y)

∂y
+

∂(xy2)

∂x
dxdy =

∫

D

(x2 + y2)dxdy
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Firstly we note that we can calculate this for D = {(0, l)× (0, l)} since it is
∫ l

0

dy

∫ l

0

x2dx+

∫ l

0

dx

∫ l

0

y2dy = 2l3/3

But, to answer the question, we see that the integrand is x2 + y2 depends only on the distance
from (0, 0) and not the angle. So the answer will be the same for any square with its vertex on
the origin.

4. (a) The conical surface is best parametrised by polar coordinates so we let D = {(r, θ) |0 < r <
1 , 0 < θ < 2π} and

s = (r cos θ, r sin θ, r)

since z =
√

x2 + y2 = r describes the cone. Now

∂s

∂r
= (cos θ, sin θ, 1) ,

∂s

∂θ
(r, θ) = (−r sin θ, r cos θ, 0) .

and so

N(r, θ) =
∂s

∂r
× ∂s

∂θ
= (−r cos θ,−r sin θ, r)

BUT wait ! We see that N points inwards towards the axis of the cone, and so we reverse the
sign of N to ensure it points outwards as directed (this is all about the ambiguity of normals
to surfaces and in which order cross products are done in the definition of N). So,

N(r, θ) = (r cos θ, r sin θ,−r)

Now we have, under the parametrisation

F(s(r, θ)) = (r cos θ, r sin θ, r4)

and so
∫

S

F · dS =

∫

D

F(s(r, θ)) ·N(r, θ) drdθ =

∫

2π

0

∫

1

0

(r cos θ, r sin θ, r4) · (cos θ, sin θ,−1) r drdθ

=

∫

2π

0

∫

1

0

(r2 − r5) drdθ = 2π

[

r3

3
− r6

6

]1

0

=
π

3

(b) Here ∇ · F = 1 + 1 + 4z3 = 2 + 4z3. So we have making the standard transformation to
cylindrical coordinates (as in Calculus 1)

∫

V

∇ · F dxdydz =

∫

2π

0

∫

1

0

∫ z

0

(2 + 4z3) rdrdzdθ = 2π

∫

1

0

(2 + 4z3)
[

1

2
r2
]z

0
dz = 4π/3.

(c) By the divergence theorem, we have that the volume integral must equal the integral of the
enclosing surface (with normal outwards). It follows then that

∫

z=1,x2+y2<1

F · dS =

∫

V

∇ · FdV −
∫

S

F · dS = 4π/3− π/3 = π.

Check this. So the ‘lid’ of the cone is parametrised by D = {(r, θ) | 0 < r < 1, 0 < θ < 2π},
s(r, θ) = (r cos θ, r sin θ, 1) and this gives N = rẑ so that

∫

z=1,x2+y2<1

F · dS =

∫

2π

0

∫

1

0

(r cos θ, r sin θ, 1) · (rẑ) drdθ =
∫

2π

0

∫

1

0

rdrdθ = π
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5. We have F = (x, y,−z) so ∇ ·F = 1+ 1− 1 = 1. So by the divergence theorem (the easiest of
the two approaches)

∫

∂V

F · dS =

∫

V

∇ · FdV =

∫

1

0

∫

1

0

∫

1

0

dxdydz = 1

If we want to calculate the LHS of the above directly, we need to divide the surface into 6 faces
of the cube. So let S1 be the the face in the plane x = 1. On S1, dS = x̂dydz and

∫

S1

F · dS =

∫

1

0

∫

1

0

(1, y,−z) · x̂ dydz = 1.

Next S−1 the parallel face in the plane x = 0. On S−1, S = −x̂dydz since the normal is
outwards from the cube. Here

∫

S
−1

F · dS =

∫

1

0

∫

1

0

(0, y,−z) · (−x̂) dydz = 0

We continue like this defining S2 and S−2 to be the faces in the planes y = 1 and y = 0, S3 and
S−3 the faces in the planes z = 1 and z = 0 and we find

∫

S2

F · dS =

∫

1

0

∫

1

0

(x, 1,−z) · ŷ dxdz = 1,

∫

S
−2

F · dS =

∫

1

0

∫

1

0

(x, 0,−z) · (−ŷ) dxdz = 0

and
∫

S3

F · dS =

∫

1

0

∫

1

0

(x, y,−1) · ẑ dxdz = −1,

∫

S
−3

F · dS =

∫

1

0

∫

1

0

(x, y, 0) · (−ẑ) dxdz = 0

The sum of all 6 faces gives
∫

∂V

F · dS = 1 + 0 + 1 + 0− 1 + 0 = 1.

6. Probably worth doing again from scratch. So 1/r = 1/
√

x2 + y2 + z2 = 1/|r| and (this is long
hand)

∇

(

1

r

)

=
(

− x

r3
− y

r3
,− z

r3

)

=
−r

r3
≡ −r̂

r2

since r̂ = r/r. It follows that

∆

(

1

r

)

= ∇ ·
(−r

r3

)

=
(3x2 − r + 3y2 − r + 3z2 − r)

r5
= 0.

Or we can use suffices, or the Laplacian in spherical polars is even better. Now
∫

V

∆

(

1

r

)

dV =

∫

V

∇ ·∇
(

1

r

)

dV =

∫

S

∇

(

1

r

)

· dS

If the volume V is a sphere of radius R then dS = r̂R2 sin φdθdφ, so

∫

V

∆

(

1

r

)

dV = −
∫

2π

0

∫ φ

0

r̂

R2
· r̂R2 sin φ dφdθ = −2π [− cos φ]π

0
= −4π
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since r̂ · r̂ = 1.

The integrand on the LHS is zero for all r 6= 0 and yet the integral over the volume of an
arbitrary sized sphere is −4π. Have we made a mistake ? No, it turns out that the singularity
at r = 0 is enough to make this happen. In physics we say that there is a point source at the
origin and it turns out that we can extend the definition of ∆(1/r) to r = 0 by writing

∆(1/r) = −4πδ(r)

where δ is a Dirac-delta function. You see this in APDE2 and Fluids for e.g.

7. (a) Use the divergence theorem to write
∫

V

∇ · E dV = 4π

∫

V

ρ(r) dV

Then, obviously,
∫

V

(∇ · E− 4πρ(r)) dV = 0

and since this is true for any volume V is must be that the integrand is zero everywhere and
hence

∇ · E = 4πρ(r), for all points r

(b) E = (x, y, z) so ∇ · E = 1 + 1 + 1 = 3 and so

Q =

∫

V

3 dV = 3.8 = 24

as V is the cuboid with three equal sides of length 2.

8. So we use the divergence theorem to write

1

3

∫

S

r · n̂dS =

∫

S

1

3
(x, y, z) · dS =

∫

V

∇ ·
(

1

3
(x, y, z)

)

dV =

∫

V

(1/3 + 1/3 + 1/3)dV =

∫

V

dV

and that’s it.

The volume of a sphere of radius a is 4

3
πa3. Using the LHS, noting that n̂ ≡ r̂ and that

r = |r|r̂ = ar̂ we have

1

3

∫

S

r · n̂ dS =
a

3

∫

S

r̂ · r̂ dS =
a

3
(4πa2) = 4

3
πa3

since the integral is the surface area of the sphere.

9. Here we want to use the divergence theorem to compute
∫

S

dS =

∫

S

v · n̂ dS =

∫

V

∇ · v dV

This works if we can find a v which coincides with n̂ on S. This can’t be done generally.

10. We have from the notes, starting from the second term in the equation below and going left
and right

∫

V

(∇v ·∇u+ v∆u) dV =

∫

V

∇ · (v∇u) dV =

∫

S

(v∇u) · n̂ dS = 0

and if ∆u = 0 in V and v = 0 on S then we get the result as stated.
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