

UNIVERSITY OF BRISTOL

School of Mathematics

Numerical Analysis 23

MATH 30010

(Paper code MATH-30010)

May/June 2022 2 hours 30 minutes

This paper contains FOUR questions. All answers will be used for assessment.

Calculators of an approved type (non-programmable, no text facility) are allowed in this examination.

Candidates may bring four sheets of A4 notes written double-sided into the examination.

On this examination, the marking scheme is indicative and is intended only as a guide to the relative weighting of the questions.

Do not turn over until instructed.

1. (a) (i) (6 marks)

Perform an LU decomposition of the matrix

$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

(all arithmetic should be done exactly and expressed as fractions rather than decimals).

(ii) (3 marks)

Show that the matrix above may also be expressed in the form $A = LDL^T$ where D is a diagonal matrix. Hence, or otherwise, show that determinant of A equals $1/2160$.

(iii) (3 marks)

Solve the system of equations $\mathbf{Ax} = \mathbf{b}$ for \mathbf{x} when $\mathbf{b} = (1, 1, 1)^T$.

(b) (i) (4 marks)

Consider now calculating the solution to the same system as in (a)(iii), but using finite precision arithmetic with three significant-figure accuracy. Thus, the matrix and vector are stored as

$$A = \begin{bmatrix} 1.00 & 0.500 & 0.333 \\ 0.500 & 0.333 & 0.250 \\ 0.333 & 0.250 & 0.200 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1.00 \\ 1.00 \\ 1.00 \end{bmatrix}.$$

Use Gaussian elimination to determine the numerical approximation to \mathbf{x} .

(ii) (4 marks)

You should find that there is a significant difference between the answers to (a)(iii) and (b)(i). Provide a plausible explanation for this. Discuss how strategies that might be used to improve the accuracy of the numerical approximation would apply in this case.

(c) (5 marks)

Determine the inverse of the $n \times n$ banded matrix

$$\begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}.$$

Continued...

2. (a) Consider the nonlinear equation

$$x = 1 - \frac{x^2}{4}. \quad (1)$$

(i) (5 marks)

Apply the fixed-point theorem to show that the fixed-point iteration

$$x_{n+1} = 1 - \frac{x_n^2}{4}, \quad n = 0, 1, 2, \dots$$

with $x_0 \in [0, 1]$ converges to a unique solution $x^* \in [0, 1]$ of (1).

(ii) (3 marks)

Determine the order of convergence of the fixed-point iteration in (a)(i).

(iii) (4 marks)

By using the mean-value theorem, determine how many fixed point iterations would guarantee that $|x_n - x^*|$ is no greater than 10^{-4} .

(iv) (3 marks)

Propose an alternative fixed-point iteration that converges quadratically to a solution, x^* , of (1).

(b) Consider the system of equations

$$\left. \begin{array}{l} f(x, y) = 4y^2 + 2xy - 5 = 0, \\ g(x, y) = 2y + 3 = 0. \end{array} \right\} \quad (2)$$

(i) (2 marks)

Determine the exact solution (x^*, y^*) to (2).

(ii) (8 marks)

When using Newton's method to solve (2), specify the choice of initial points (x_0, y_0) for which the exact solution of (2) is arrived at after just one iteration.

Continued...

3. Let $V_n(x)$, $n = 0, 1, 2, \dots$, be a sequence of polynomials of degree n that are orthogonal on the interval $(-1, 1)$ with respect to the weight function $w(x) = \sqrt{(1+x)/(1-x)}$. Hence, they satisfy the orthogonality relation

$$\int_{-1}^1 V_n(x) V_m(x) \sqrt{\frac{1+x}{1-x}} dx = 0 \quad \text{if } n \neq m.$$

In addition they satisfy the standardisation condition $V_n(1) = 1$ for all n . You are *given* the values of the following integrals that involve the weight function $w(x)$:

$$\int_{-1}^1 w(x) dx = \pi, \quad \int_{-1}^1 xw(x) dx = \int_{-1}^1 x^2 w(x) dx = \frac{\pi}{2}, \quad \int_{-1}^1 x^3 w(x) dx = \frac{3\pi}{8}.$$

(a) (8 marks)

Determine the polynomials $V_0(x)$, $V_1(x)$ and hence show that $V_2(x) = 4x^2 - 2x - 1$.

(b) (5 marks)

Specify the points x_i and weights w_i in the 2-point Gaussian quadrature formula

$$\int_{-1}^1 f(x) \sqrt{\frac{1+x}{1-x}} dx \approx \sum_{i=1}^2 w_i f(x_i).$$

(c) (4 marks)

Use your results of part (b) to find an approximation for the integral

$$\int_0^1 t e^t dt.$$

(You are not asked to evaluate this approximation numerically.)

(d) (8 marks)

The polynomials $V_n(x)$ have the explicit form

$$V_n(x) = \frac{\cos \left[\left(n + \frac{1}{2} \right) \arccos(x) \right]}{\cos \left[\frac{1}{2} \arccos(x) \right]}. \quad (3)$$

Show that the functions in equation (3) satisfy the recursion relation

$$V_{n+1}(x) + V_{n-1}(x) = f(x) V_n(x)$$

where $f(x)$ is a function that you should determine. Infer that the functions in (3) are indeed polynomials of degree n .

[Hint: The trigonometric relation $\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$ might be helpful.]

Continued...

4. This question (25 marks) is omitted due to requiring non-examinable material.

End of examination.