Numerical Analysis MATH30029

Lecture Notes Autumn 2025 (Adapted from notes of Martin Sieber)

(©University of Bristol 2025. This material is copyright of the University unless explicitly stated
otherwise. It is provided exclusively for educational purposes at the University and is to be
downloaded or copied for your private study only.

Contents

1 Finite precision arithmetic and error 4
1.1 Binary storage: approximation to numberso 4
1.2 Limits on the size of numberso 0oL 5)
1.3 Rounding errors 5)

2 Linear systems of equations 7
2.1 Invertible matrices 8
2.2 Gaussian elimination 0oL 9
2.3 Rounding errorso 12
2.4 LU-decomposition 14

3 Root finding 18
3.1 Bisection method 18
3.2 Fixed-point iteration 19
3.3 Newton-Raphson method 23
3.4 Aitken’'s method 26

3.5 Solving systems of nonlinear equations: Multi-dimensional Newton’s method . . .

3.6 The steepest descent method (the gradient method)

Interpolation: approximation of curves by polynomials

4.1 Polynomial approximation Lo
4.2 Lagrange interpolating polynomials o 00
Differentiation

5.1 Difference formulae
5.2 Round-offerrors
5.3 Richardson extrapolation
Integration

6.1 The trapezoidal rule
6.2 Simpson’srule
6.3 Romberg integration Lo
6.4 Problems in the evaluation of integrals
6.5 Weighted integrals
6.6 Orthogonal polynomials
6.7 Gaussian quadrature L L

Ordinary differential equations: initial value problems (IVPs)

7.1 Introduction
7.2 Euler’'s method
7.3 Local truncation error

7.4 Global error 60

7.5 Solutions of linear difference equations L. 60
7.6 Euler’s method for higher-order ODEs. 62
7.7 Higher-order Taylor methods L 62
7.8 Runge-Kutta methods 63
7.9 Multistep methods 65
7.10 Stability (or zero-stability) 68
7.11 Time stability (absolute stability or A-stabilty) 72
712 Stift ODEs o o 74
Ordinary differential equations: boundary value problems (BVPs) 77
8.1 Imtroduction 7
8.2 Finite difference methods for linear problems 7
8.3 Spectral methods for linear problems 80

Course Introduction

Numerical Analysis concerns the development and study of computational methods for approxi-
mating solutions to problems in mathematics involving continuous variables (as opposed to the
study of discrete mathematics which normally falls within the remit of Computer Science.)

In many application areas in the physical sciences problems arise which cannot be solved exactly
using even the most sophisicated mathematical methods and so computational methods are
devised to approximate their solutions.

There are various important considerations to when devising these methods/algorithms such as
efficiency (speed), accuracy, robustness.

Numerical Analysis is largely concerned with answering these questions thereby allowing us to
understand which algorithms are best suited to certain tasks.

We are going to study a subset of the most important problems in Numerical Analysis and the
ones which are most relevant to practical applications. We cannot cover all the things we want
and major omissions include a plethora of matrix methods (condition number, QR factorisation,
Singular-Value Decomposition, Gauss-Seidel Interation, conjugate-gradient method). For those
interested, books by Golub and Van Loan or Trefethen make excellent reading.

The type of questions that we will investigate are

e What kind of methods exist 7

When does a method converge ?

How rapidly does it converge ?

Is a method stable ?

How big is the error of an approximation ?

What are the limitations of making calculations on a computer (rounding error effects) 7

This unit is not about writing computer code. The implementation of a numerical method into
a computer program is an additional step requiring the development of algorithms.

4

If you want to read about a topic in more detail then a recommended course text is Numerical
Analysis by Burden and Faires (available online via a link from the course webpage) and this
covers most of the topics in the course. There are many other good books on Numerical Analysis

which can be found in the Numerical Analysis section in the Queen’s Library (books QA 297

1 Finite precision arithmetic and error

When making calculations on a calculator, or computer, numbers are not stored exactly (e.g.
m = 3.1416... is irrational and 1/3 = 0.3333. .. recurring both contain an infinitely long decimal
representation). Most modern digital devices store numbers using 64-bit (or double precision; it

used to be more common to use 32-bit or single precision) which is set by a universal standard:
[EEE 754-2019.

1.1 Binary storage: approximation to numbers
Recall the conversion of a binary representation of a number to a decimal representation works
according to this example,

101101 =2° +2° 4+ 2° +2° =324+ 8444+ 1=145

64-bit means that a number stored on a computer is represented by 64 bits of memory each of
which can either be set to 0 or 1. E.g. a number x is represented by

= _0 10000000011 10111001000100, .
s c f

The first bit (being 0 or 1) represents the sign of the number. The next 11 bits represent the
(base 2) exponent and the final 52 bits are the binary fractional representation of the number.
That is, the decimal representation of a number is given by

(_1>s<1 4 f)2c71023.

In our example, this results in

e () 0 0 0 0 6))

whose decimal representation is
x = 27.56640625.

The next largest number we can represent exactly is found by replacing the last digit by 1, or

x = 010000000011 1011100100010000000000000000000000000000000000000001

which is, in decimal,
x = 27.5664062500000017763568394002504646778106689453125
and the next smallest number is
x = 010000000011 10111001000011
which is, in decimal,
x = 27.5664062499999982236431605997495353221893310546875.

It’s not the number of decimal places represented by binary storage of numbers that is the
immediate problem, it is that only some numbers can be represented exactly.

The relative difference between two consecutive numbers is evidently 1/25% & 0.22 x 1071® and we
commonly refer to a 64-bit systems as being accurate to roughly 16 digits. For 32-bit systems, the
fraction (f) is 23 bits long, the exponent (c) is 8 bits so and the relative error is 1/2% ~ 1 x 1077
and we commonly refer to 32-bit systems as being accurate to roughly 7 digits.

1.2 Limits on the size of numbers

As well as limited accuracy, the finite exponent means that computers have upper and lower
limits on the size of numbers that can be stored. For 64-bit systems the smallest positive non-
zero number is

Tonin = (—1)°2171923(1 4 0) ~ 0.22 x 107307
and the largest number is
Tnar = (_1)022046—1023(1 + 1— 2—52) ~ 0.18 x 10309‘

Attempts to store numbers smaller than z,,, or larger than x,,,, result in what is referred
to as underflow and overflow. The values of ¢ = 0 (00000000000 in binary) and ¢ = 2047
(1111111111) are reserved this. A computer will commonly represent numbers smaller than ,,;,
as zero and continue. For numbers exceeding x,,,, a computer is likely to issue a “NaN” (not a
number) warning, or ‘crash’.

Q: Do we ever have to worry about numbers so big or so small 7 Seems unlikely.

7

A: Not all the time, but certainly sometimes®.

1.3 Rounding errors

Binary storage is not easy to work with since we are used to working in a decimal system. Based
on above, we assume we have a system which stores N digits accurately (N = 15 for 64-bit
systems).

E.g.: if N =5 we would write
T = 3.1416, e ! =3.6787 x 107" (or, more simply, 0.36787)

and we say we have 5-digit precision.

Remark: there are two ways of truncating the representation of a number: chopping and
rounding. Throughout this course, we adopt rounding the last digit to the nearest whole
number so that, for e.g., 3.1415926 is represented as 3.1416 (5 digits) and 3.14159 (6 digits).

A consequence of having to approximate numbers is that errors can be introduced into arithmetic.
The operations +, —, X, / are called floating point operations or flops.

For e.g. with 5-digit precision, z = 7 x e~!, which has an exact value 1.155727 ... is represented
numerically by
T = 3.1416 x 0.36787 = 1.1557.

Here there is no loss of accuracy due to the truncated storage of = and of e~! and through the
arithmetic operation of multiplication. However, consider z = m/e™! = 8.53973. .. where the use
of 5-digit precision results in

T =3.1416/0.36787 = 8.5395,
and is not the exact value x rounded to 5 digits. This is a manifestation of round-off error and

in a moment we show how these small errors can accumulate into larger errors.

Defn: There are two ways of quantifying error:

!The maiden flight of the Ariane 5 rocket in 1996 ended in disaster, exploding just 40 seconds after take
off. The cause was found to be the conversion of a 64-bit decimal to a 16-bit integer which was too large to be
represented.

(i) Absolute error: e = x — 7.

r—x

(ii) Relative error: e, =

'. E.g. if the relative error is 0.02, this means the error is 2%

of the exact value.

Defn: In a system with N-digit precision an exact number x is approximated by Z so that

r—XT

‘<6=10_N
T

and € is the machine accuracy.

1.3.1 Example

Compute f(r) = 2° — 6.12% + 3.2z + 1.5 at z = 4.71 using 3-digit arithmetic. In the table we
work from left to right.

x z? 3 6.12> 3.2z f(z)
Exact | 4.71 22.1841 104.487111 135.323301 15.072 —14.263899
3-digit | 4.71 4.71 x 4.71 =22.2 222 x4.71 =105 135 15.1 —134

The relative error is
B —14.263899 + 13.4 N

=T “1a2e300 |~
equivalent to 6% which is a lot higher than 0.1% associated with 3-digit accuracy.

Q: Can we do anything to improve the accuracy ?

A: In this case, consider the nested calculation: f(z) = ((x — 6.1)z + 3.2)z + 1.5. With this
expression, using 3-digit accuracy we end up with a relative error of 0.0025 or 0.25%.

Why ? If we count the number of flops needed for the first calculation it is 9(x) plus 3(£). In
the second calculation it less that half this: 2(x) plus 3(%) (i.e. fewer errors).

2 Linear systems of equations

In this section we consider solutions xi, x», ..., x, to the system of n equations:
a11r1 + a9 + ... + a1pT, = bl
211 + Q999 + ... + Gopx,, = b2

(1)
Ap1T1 + oo + ... + Xy, = bp.

We are already comfortable writing (1) as

where

A=
Anl .. Gpn T, b,

We can also express (1) as

n
E aijxj:bi, i:1,2,...,n
Jj=1

Provided the inverse, A~!, exists the solution is represented by
x=A"'b
Remark 1: A~!is a notational device: it doesn’t tell you what A~! is.

Remark 2: Indeed, the inverse exists iff det(A) # 0 where det(A) is called the determinant
of A. Then A is said to be non-singular and the solution is unique.

If det(A) = 0 then A is said to be singular. In this case, there may either be no solution or
infinitely many solutions. E.g.

11\ /= \ (1

2 2 e)\ «

10

and det(A) = 0.

e If o = 2 then solution is 1 = 1 — x5 for any z,. 2

o If o # 2 then there are no solutions.

E.g.: If n =2 we know that there is an explicit formula:

A1 — 1 Q22 —A12
det(A) \ —a2 an

where det(A) = ay1a92 — aj2a9; is the determinant.

Remark: In fact, there is an explicit formula for (or algorithm) for calculating A~! for n > 2,
known as Cramer’s Rule?. E.g. n =3

Q22 Q23 | %12 a3 aiz2 ais
a3z as3 32 as3 Q22 A23
A1 — 1 | Q21 Gz23 air a3 | Qi1 ai3
det(A) as ass as ass a1 a23
a1 @22 | G2 an air a2
s as2 32 a3l Q21 A22
where

Qo2 A23 Q21 A23 Qg1 A22

det(A) = ay; — Q12 + a3
a3z a33 as1 ass as1 432

The process is recursive: for n = 4, each entry of A~! is expressed as the determinant of a 3 x 3
matrix, which is itself expressed in terms of 2 x 2 determinants (as above). And so on.

Q: OK, so are we done ?

A: No, because a careful counting of the flops needed to invert an n x n matrix shows they scale
like (n + 1)!. This is bad since (Stirling’s formula) n! grows like n"//n. For example, imagine
with n = 10 the calculation of an inverse took 10~° seconds on a computer. For n = 30 it would
take 4000 years !

Zthere is an overlap with eigenvectors and eigenvalues that we are not going to follow here
Safter Gabriel Cramer (1704-1752), who published the rule for arbitrary n in 1750

11

2.1 Invertible matrices

A general class of matrices that are invertible are orthogonal matrices Q satisfying QQ7 =
QTQ = I. Evidently Q! = QT. Otherwise examples of matrices with explicit inverses are rare.

2.1.1 Diagonal Matrices

If a;; = 0;0;; then clearly a;jl = a;lézj. Simple.

2.1.2 Triangular systems

If the matrix U is upper triangular (u;; = 0 if ¢ > j) then the system Ux = b is easy to solve

U1 Ty + UpTe + U133+ ...+ URT, = by
U99To + U233 + Ce + Uop T, = bz
Up-1n—1Tp—1 T Un—1nTn = bn—l
Upn Ty = bp.

If u; #0,1=1,2,...,n, (this is equivalent to det U = []'_, u;; # 0) then the unknowns z; can
be computed by backward substitution:

br,
Tp = ;
unn
n
bj — E ULk
k=j+1 .
x; =) j=n—1n-2 ... 1
Ujj

12

Similarly if the matrix L is lower triangular (/;; = 0 if i < j) then the system Lx = b can be
solved by forward substitution:

$1—E;
j—1
bj_zljkxk
= —= =12, ,n—1

L

Sometimes it is possible to invert lower triangular matrices explicitly. Of use later on is the
following (see homework):

10 - 0 1 0 - e 0
0 - : 0
- . A
Ly = —lgr1 1 — Lt = ey 1
g2 0 T T lky2x 0
: : N | : : |
0 - by 0 - 0 1] 0 -l 0 - 01

2.2 Gaussian elimination

Although named after Carl Gauss, the method was used in China at least as far back as 179AD.

The idea is to apply elementary row operations to reduce the matrix A to upper triangular
form allowing the resulting system to be solved using back substitution.

There are three row operations that do not change the solution vector x:

(i) multiply row R; by a constant A: R, — AR,
(ii) add A times row R; to row R;: R; — R, + AR;

(ili) interchange rows R; and R;: R; < R;

13

We'll use (for now) the last two operations to bring the system into triangular form. This is the
Gaussian elimination process. It is best described using an example.

2.2.1 Example

Solve the following for x:

3 6 9 3
2 5 2| x=| 4
-3 —4 -11 -5
We perform the row operations
2
Ry — Ry — gRl
Rg — R3 + Rl

to obtain zeros below the diagonal in the first column:

3 6 9 3
0 1 4| x=1| 2
0o 2 -2 -2
Next, the row operation
Rg — Rg — 2R,

produces a zero below the diagonal in the second column:

3 6 9 3
0 1 4| x= 2
0 0 6 —6

Now the system is upper triangular it can be solved by backward substitution

6xs = —6 — r3 = —1
To —4ry =2 —= Ty = —2
3x1 4+ 6x9 + 923 = 3 — T = 8.

14

Remark 1: At each step of the Gaussian elimination, the matrix A and the vector b change,
but the solution vector x remains unaltered.

Remark 2: A compact space-saving device that helps simplify the presentation involves per-
forming the row operations on the n x (n 4+ 1) augmented matrix A:

ai; ... Qip bl

A=[AD] =

Apl .- Qpp bn

2.2.2 General method

We apply the method to a general matrix A. In step 1 of the Gaussian elimination process one
applies row operations to obtain zeros below the diagonal in the first column.

Step 1:
ORI
3] 1] aiq 1j
for j =1,...,n with
pM — b; — Qi1 by
’ an
for i = 2,...,n and results in an augmented matrix of the form
a1 a2 ... ai, b
0 a%) o a;} bg)
0 al) ... ab) oY)

Remark: This is possible only if a;; # 0; the matrix element aq; is called the pivot element
of the operations in step 1.

Step k: We can apply the same set of row operations to each reduced matrix. L.e. for 1 < k <

n — 1 we define
(k—1)
4B =) G)
g T g (k—1) "kj
A

15

for j =k,...,n with

B b _ G e
e

for + = k, ..., n requiring pivot element a,(!zfl) # 0. E.g. After step 2 using k = 2 results in the
augmented matrix

fann a2 a3 ... ap, b
1 1 1 1

0 aéQ) agg) o a;n) bg)
0 0 o ... a2 b

0 0 o ... a WP

and the process continues until the matrix is in upper triangular form.

Remark: A simple calculation* of the flops needed shows it grows like n3, with increasing n,

significantly less rapdily than (n + 1)!.
Q: What can go wrong?

A: A pivot element can be zero!

2.2.3 Example (Pivoting)

Consider slightly altering Example 2.2.1 to give the augmented matrix

3 6 9 3
2 4 2 4
-3 —4 —-11 -5

We perform the row operations

2
R2 — R2 — gRl
Rs — Rs + Ry.

4Specifically, we can deduce that there are a total of n(n + 1)/2 divisions, (2n® + 3n% — 5n)/6 multiplications,
and (2n® + 3n? — 5n)/6 additions for a total of approximately 2n®/3 operations.

16

This leads to

3 6 9 3
0O 0 —4 2
0 2 -2 =2

and cannot continue with the usual Gaussian elimination process. The solution is to swap rows
to obtain a non-vanishing pivot element and then continue. I.e.

3 6 9 3
0 2 -2 =2
0O 0 —4 2

In this example we obtain a matrix which is already in triangular form.

Remark 1: The process of swapping rows in order to obtain a non-vanishing pivot element is
called pivoting.

Remark 2: In the case that the pivot element and all elements below it are zero then one can
show that det(A) = 0 (simple: you try it !).

2.3 Rounding errors

Rounding errors can affect Gaussian elimination. Here’s a simple example.

2.3.1 Example

Consider the following system of equations with € < 1

€X] + To = 1
T+ X9 = 2
The exact solution is
1 1— 2¢
€Tr1 = To =
o 2T 11—

and we can use the Binomial expansion to give 1, = 1+e+e?+... ~ 1+¢€ when € < 1. Similarly,
o (1—2)(1+e+ef+..)~1—c¢

17

Take € = 10~* and let us perform calculations with 3-digit precision. Our augmented matrix is
107 1 1

@ E

The row operation Ry — Ry — 10* Ry leads to (exactly)

1074 1 1
0 —9999 —9998|"

However, if we work with 3-digit precision this gets rounded (e.g. 9999 = 9.999 x 10* but since
we can only store 3 digits we round to the nearest 3-digit number, 1.00 x 10°) to

1074 1 1
0 —10000 —10000}"
Then we have the upper triangular system

1074 429 = 1,
—10000z, = —10000,

with the solutions x9 = 1 and x; = 0 instead of z5 ~ 1 and z; =~ 1.

Q: Why did this happen ?

A: The pivot element (though not zero) is much smaller than the element below it. In fact one can
formally show that the Gaussian elimination process is numerically unstable: the combined
effect of multiple row operations propagate and inflate errors until they dominate solutions.

2.3.2 Partial pivoting

A solution is to interchange rows before Gaussian elimination

1 1 2
10074 1 1|

The row operation Ry — 107*R; — R, performed with 3-digit precision now leads to
11 2
011

18

whose solution is x5 = 1 and x; = 1 and matches the exact solution expressed to 3-digit precision.

The method of partial pivoting formalises this process. Before step k of the Gaussian elimina-
tion process the row having the element with the largest magnitude amongst the leading column

(angl), e ,agfl)) is interchanged with the the row containing the pivot element.

2.3.3 Scaled partial pivoting

Partial pivoting works in many cases, but not always. Consider, for example, Example 2.3.1 but
with the first row multiplied by 2 x 10*. We obtain

211 +2 x 102, = 2 x 10*
(3) T+ Ty = 2.
The solution is same, x; &~ 1, x5 &~ 1. However, this no longer requires partial pivoting and so

Gaussian elimination leads to the same problem as before and we obtain x5 &~ 1 and x; ~ 0 when
performing calculations with 3-digit precision.

Q: Why ?

A: The largest elements in different rows have vastly different magnitude.

A possible solution (Scaled partial pivoting): before starting define a scale factor for each
row:

S; = max |a;; 1=1,....n
7 1§j§n|w|’ 9 J

which is non-zero otherwise the matrix is singular. We now do R, <+ R, where
lam| _ @1

max
Sp 1<k<n Sy

The effect of scaling is to ensure that the largest element in each row has a relative magnitude of
1. In the example above this reduces (3) to (2) and now partial pivoting works. For larger than
2 x 2 matrices subsequent row interchanges are performed using the same principle noting that
the values of s; used are computed only once before step 1 and move with the row interchanges.

Remark: Other pivoting strategies. Complete pivoting includes row and column interchanges,
but comes with an additional computational cost that is only justified if high accuracy is critical.

19

2.4 LU-decomposition

Imagine that it is possible to write A as the product of two factors
A= LU,
where L is a lower triangular matrix and U an upper triangular matrix. It follows that
b=Ax=LUx= Ly

(say) where we have written y = Ux. Now we can compute y from Ly = b using forward
substitution, and then compute x from Ux = y using back substitution.

The row operations of Gaussian elimination at step 1 are expressed as

. ;1
RZ’ — Rl — lith 1= 2, o,n, where lil = —

a1

These row operations transform the matrix A into a new matrix A%Y) = L; A where

1 0 0 --- 0]

Iy 1 0 -+ 0

L1 = —131 0 1 :
: R ()
S U (R

It follows that A = L7'AM (see Section 2.1.2). Le.

_CLH 19 0 aln- M1 0 0 0 07 -an Qg o e aln-
a a a 0 (1) (1)
21 Q22 2n by 1.0 O 0 o) Ao
l31 0 1 0 0 . .
"y 00 1 : S :
N S :
anl anz . e . e ann _lnl 0 0 ct O 1_ 0 a£112) a£7,172

1 . . S
where agj) = a;; — a;1 a1;/an as in Gaussian elimination.

20

Remark: This process is not Gaussian elimination: we are not applying row operations to the
vector b. In fact this does not involve b at all.

Step 2: This process can be continued. Now the Gaussian elimination process is applied to A®M)
and the new pivot element aglz) is used to eliminate the matrix elements in the second column
below the diagonal. The row operations are

Ri %Ri—ligRQ, 2':3,...,n where lig = %
Qo9
and we can encode this as LyAY) = A®) where
1 0O 0 O 0]
0 1 0 O 0
0 =l 1 O 0
La=1o 1y 0 1
: : : . .0
0 0 0 -~ 0 1

in exactly the same manner as before. So A = L;'A® and A = L7'L;'A® or

(a1 anz a1 | 1 0 0 0 0] [an a2 a3 a1y |
a1 Q22 Qop by 1 0 O 0 0 aélg) aélg) T aéQ
s I 10 0 0 0 ag? cee e aéi)
ol e 01 : : : '
. . : . . . O . : : :
anl an2 ann _lnl an 0 ct O]._ | O 0 aglz?)) N “ e a%%%_
One can continue this process until Gaussian elimination is complete. The final result is
[a1 ar Q1 | 1 0 0 O 0] [uin w2 ws Uip
a1 Q22 Q2p lby 1 0 O 0 0 uop U Uop
: : l31 l32 1 0 0 0 0 Uuss U3n
lg lip liz 1 :
: : : 0 : :
| Qn1 Ap2 Qnn, | _lnl ln2 ln3 ln,nfl 1_ L 0 0 Unn

21

where we have labelled the elements of the matrix obtained from Gaussian elimination by wu;;.
The result is A = LU as required.

2.4.1 Advantages of LU-decomposition

(i) Calculating the determinant of A, since
det(A) = det(L) det(U) = [J ua.
i=1

This is much quicker than the Laplace expansion along rows or columns if n is large.

(ii) Particularly useful for solving Ax; = b, for multiple RHS vectors b;, since A = LU is done
only once.

(iii) Can use (ii) to find A™'. Consider i = 1,2,...,n and set (b;); = d;; and then we can
organise the multiple systems in the following way:

A X1 X9 0 Xp| = b1 b2 bn = 1.

Multiplying LHS and RHS by A~! gives us

X1 Xo 0 X,| = Ail

Therefore the n columns of A~! are the n solutions, x; of Ax; = b; for i = 1,...,n with
(bi); = 0y

Remark: The LU-decomposition is possible if the Gaussian elimination can be performed with-
out row interchanges. What if it cannot ?

22

2.4.2 Partial Pivoting and Permutation Matrices

Consider, for e.g.
1 2 3

A=14 2 1
6 3 6

Let us partial pivot to promote the 6 to the top LH element. I.e. we have a pre-step 1 Ry <+ R3.
This row interchange can be encoded by premultiplying by a permutation matrix

001
P3=1{0 1 0 (=1 under a row swap of Ry <> Rs.)
100
Le.
6 3 6
PsA=14 2 1
1 2 3
Now step 1 is R2—>R2—§R1 andR3—>R3—éR1 to get
1 0 0[1[6 3 6
PyA= |2 1 0|0 0 —1|=1L7'AW.
s 01] [0 2 2

To continue we need to interchange R, and R3 and this requires another permutation matrix

10
Pyy=10 0 (=1 under a swap of Ry <> R3.)
01

O = O

Remark: Permutation matrices belong to a class of Orthogonal matrix and satisfy (P;;)~! =

(P;;)T. Since the swap needs to be applied to AW we write
PisA = L7 PRl Pys AW,
and it turns out (below) to be useful to premultiply by Ps3 so that
PA = Py L' PLU

23

where

6 3 6
U — P23A(2) — 0 % 2
0 0 —1

is the final result of Gaussian elimination with partial pivoting,

1 00]foo01 001
P=PFP3P3=10 0 1 0 1 0|l=11 00 (II underR2<—>R3andR1<—>R3)
010/[1 00O 010
and
100t oo0][too0 100
L=PyL'Pyy=10 0 1| |2 1 0/ |0 0 1|=]|z 10
01 0[5 01][010 201

where the premultiplication by P3 swaps rows and the post multiplication swaps columns !

Remarks: This is quite complicated but LU with pivoting can be summarised as PA = LU in
which:

e where P records all the row interchanges, applied to I;

e as you develop L through Gaussian elimination steps, any row changes need to be applied
to L.

e Alternatively, do all necessary row interchanges first (i.e. do PA) and apply LU decompo-
sition to PA.

e Note P71 = PT is also an orthogonal matrix (see homework).

e When it comes to solving Ax = b write PAx = Pb = b’ first and then substitute PA = LU
and then forwards/backwards substitute.

24

3 Root finding

We consider methods for determining numerical solutions to

f(z) =0

when they cannot be determined explicitly (e.g. e +x = 0). Normally root-finding methods are
iterative and meaning the solution is not found in a finite number of steps.

[.e. we generate a sequence g, x1, T3 S.t. T, is determined in terms of previous elements in the
sequence with the goal that x, — x* as n — oo where f(z*) = 0.

3.1 Bisection method

Suppose we identify a and b such that f(a) and f(b) have opposite signs (f(a) - f(b) < 0). It
follows by the intermediate value theorem (IVT) that there exists at least one root x = z*,
x* € (a,b) such that f(z*) = 0. There can be any more than one root, but there must be an odd
number of roots.

The bisection algorithm consists of these steps.

1. Set n=1

2. Let , = S(a+b).

3. Calculate f(z,).

4. If f(x,) = 0 then 2* = z,, and we are DONE.
Else if f(z,) - f(a) < 0 then 3 root in (a,z,): redefine b = x,, and continue to 5.
Otherwise f(x,) - f(a) > 0 then 3 root in (z,,b): redefine a = x,, and continue to 5.

5. Increase n by 1 and go back to step 2.

Remark: We need to force the iteration to stop after N steps, say.

25

3.1.1 Example

Find all roots of f(z) =e* — 3z = 0.

Draw graphs of e* and 3z and identify roots of f(z) as the values of x where curves intersect,
which allows us to estimate intervals (a,b) which can be used to initiate the Bisection method.

Alternatively we can sample the function f(z) at a few values of . Here we have f(0) > 0,
f(1) <0 and f(2) > 0. There is one root in the interval [0, 1] and another in the interval [1,2].

Here is the method with a = 1, b = 2 up ton = 9. The exact value of the root is * = 1.51213. . ..

a Ty b f(a) f(zn) f(b) || max. err.

1.0 1.50000 2.0 -0.28172 -0.01831 1.38906 2-1
1.50000 1.75000 2.0 -0.01831 0.50460 1.38906 272
1.50000 1.62500 1.75000 || -0.01831 0.20342 0.50460 273
1.50000 1.56250 1.62500 || -0.01831 0.08323 0.20342 24
1.50000 1.53125 1.56250 || -0.01831 0.03020 0.08323 27°
1.50000 1.51562 1.53125 || -0.01831 0.00538 0.03020 276
1.50000 1.50781 1.51562 || -0.01831 -0.00660 0.00538 277
1.50781 1.51172 1.51562 || -0.00660 -0.00064 0.00538 278
1.51172 1.51367 1.51562 || -0.00064 0.00236 0.00538 279

© 0 I O Ot W N =3

Remark 1: The maximum error after n iterations satisfies
b — al
2n
and a,b are end points of the original interval. I.e. the maximum error is only halved by an

iteration and although the method is very robust and convergence is guaranteed, it is considered
to be slow.

|xn —a" <

Remark 2: If we want to compute a root to within a prescribed accuracy or tolerance €;,; > 0
then the number of steps should be the smallest NV s.t. that

|b—a
AN

< €tol

26

which rearranges to
N > log(|b — al/€ior)/ log(2).
3.2 Fixed-point iteration
If we want to find 2* such that f(z*) = 0 we can express the condition instead as z* = g(z*). This

is most simply done by defining g(x) = x4+ f(x) but this is not the only way (e.g. g(z) = z— f(x)
also works).

Defn: If x* satisfies

it is said to be a fixed point of g(x).

Defn: A fixed-point iteration is defined by
Tnt1 = g(zn), n=0,1,2,3,...

for a given initial guess x such that z,, — x* as n — oo.
Remark: Fixed point iterations are often easier to analyse than root-finding methods.

Numerical experiment: Use a fixed-point iteration to find a root of f(x) = cosz —x = 0.
Choose g(x) = cos(x) and xy = 1. L.e. we solve x,,11 = cosx, with zo = 1.

Remark: The numerical iteration converges to the fixed point x* = 0.739085 ... and the errors
e, = x, — z* decrease by a factor that is approximately constant (e, /e,_1 ~ 0.673 for large n).
This is slower than bisection.

Q: Does the recasting of f(z) = 0 into g(z) = = affect the convergence ?

A: Yes, as this example shows...

27

n T €n en/en_1
0 1.000000 0.260915
1 0.540302 | —0.198783 | —.761869
2 0.857553 0.118468 | —.595967
3 0.654290 | —0.084795 | —.715765
4 0.793480 0.054395 | —.641488
5 0.701369 | —0.037716 | —.693376
6 0.763960 0.024875 | —.659516
7 0.722102 | —0.016983 | —.682734
8 0.750418 0.011333 | —.667304
9 0.731404 | —0.007681 | —.677785
10 0.744237 0.005152 | —.670767
20 0.739184 0.000099 | —.673558
30 0.739087 0.000002 | —.673620

3.2.1 Example

Consider finding the roots of f(z) = x? —x — 1 (i.e. the solutions z = z* of f(z) = 0).

Here are four different fixed point iterations z,41 = g(x,) whose fixed points z* coincide with
the roots of f(z):

28

Let’s calculate the iterates for each fixed-point iteration with xy = 2. In this case there are two
roots which we know exactly since f is quadratic. The are 2* = (1£+/5)/2. We see that g; does

not converge; gs 34 all converge to the positive root, 2* = 1.618034 .. ., but g4 is much faster.

n || =, from gi(x) | =, from go(z) | x, from g3(z) | x, from g4(z)
0 2 2 2 2
1 3 1.500000 1.732051 1.666667
2 8 1.666667 1.652892 1.619048
3 63 1.600000 1.628770 1.618034
4 3968 1.625000 1.621348 1.618034
5 15745023 1.615385 1.619058

6 1.619048 1.618350

7 1.617647 1.618132

8 1.618182 1.618064

9 1.617978 1.618043

10 1.618056 1.618037

11 1.618026 1.618035

12 1.618037 1.618034

13 1.618033 1.618034

14 1.618034

15 1.618034

Qs: When does a scheme converge 7 What determines the speed of convergence ?

3.2.2 Conditions for convergence

Fixed-Point Theorem (FPT): If g(z) € Cla,b] and g(z) € [a,b] for all x € [a,b] there exists

at least one fixed point z* € [a, b] such that g(z*) = z*.

Suppose, further, that g(z) is differentiable on (a,b) and 3k < 1 such that

lg'(x) < K

29

Vz € (a,b).

Then the fixed point is unique and, for any o € [a, b], the sequence z,,11 = g(x,), n =0,1,2,...
converges to the fixed point.

Proof: (i) Ezistence of fized point: If g(a) = a or g(b) = b then we are done. Assume otherwise
so that
gla) —a>0 and ¢g(b)—b<0

since it is now assumed that g(x) € (a,b) if x € [a, b]. It then follows from the intermediate value
theorem that 3z* € (a,b) such that g(z*) — 2* = 0.

(ii) Uniqueness of fized point: Assume that 3 two fixed points =3, x5 € [a, b] such that g(z}) = =7,
g(x3) = b and x5 > 27 (w.l.o.g). Then

g(w3) —g(xi) _ w5 —]

= =1
rh —] xrh —]
Using the mean-value theorem
g(x5) —g(a7
‘M =gl <k<1
Ty — T

for some ¢ € (z7, x3) which is a contradiction.

(iii) Convergence of the iteration: We use the mean-value theorem to obtain
|2 — 27| = [g(zn1) — g(&")] = g' (&)l [2n—1 — 27| < kfzp — 27|
where &, lies between x,,_; and z*. Using this relation iteratively we obtain
|z — 2% < kl|wn1 — 2| <k 2o —2*] < .. < K" |20 — 27
Taking the limit n — oo then yields
lim |z, — 2% < Jg{}okn |zg — 2| = 0.

n—oo

Note: If z,, is sufficiently close to x* and if we define the error at the nth step by e, = x,, — z*,
it follows that
T — 2" = g(rn 1) — 9(2") = ¢'(§) (Tn1 — 27) = ¢'(2") (21 — 27)

where &, € (z,-1,2%). Le. e, = ¢'(x*)e,_1. Hence:

30

(i) The size of ¢'(x*) controls the speed of convergence;

(ii) The iteration will not converge to z* if |¢'(z*)| > 1.

Example: In Example 3.2.1 with z* = 1.618034 we find:

g (x*) =~ 3.24 > 1, (does not converge);

g5(z*) = —0.382, (converges);

g5(z*) = 0.309, (converges slighter faster than gs);
gy(xz*) =0, (calculation above needs modifying...)

3.2.3 Order of convergence

Defn: Let {z¢,z1,...} be a sequence that converges to x*, meaning lim,, ., x,, = z*. If positive
constants o and A exist such that

(5) T = el

n—00 |3;'n — 1’*‘0‘

then the sequence converges to z* with order of convergence o and asymptotic error con-
stant \.

Remark: In particular, we distinguish the following important cases (with e, = =, — z*):

e If =1 (and if A < 1) the sequence is linearly convergent (|e, 1| ~ A|e,| if n is large);
e If o = 2 the sequence is quadratically convergent (|e,. 1| ~ \|e,|? if n is large);

e If a = 3 the sequence is cubically convergent (e, 1| ~ \|e,|® if n is large).

Theorem: If the fixed-point iteration z,.1 = g(z,) converges to z* € [a,b] and g satisfies
g € C?la,b] and
0=g/@) =) = =g I)) £0

31

(i.e. the first p — 1 derivatives vanish at x = x*) then the order of convergence is p and the
asymptotic error constant is

Proof: We use Taylor’s theorem (Ist year analysis), together with x,,1 = g(z,) and z* =
g(x*), to obtain

Ty — 2" = g(x,) — g(z")
o P U SC.0) P
e ' P! !
Pl k) (g @) (¢(g

where £(x,,) € (z,,,2*). The first term on the right-hand side of the last line vanishes due to the
assumption of the theorem and we obtain
Tnn —a*] L [g®(En)) [9P ()

lim ———— = lim =

and comparison with (5) completes the proof.

Example: In our previous Example 3.2.1, f(z) = 22 — 2 — 1 = 0 with a root z* = (1 + /5)/2

we showed that
[|

2z — 1
is s.t. gj(z*) = 0. One can further check that gj(z*) # 0, and hence we conclude from the last
theorem that the convergence is quadratic.

ga(z) =2 —

3.2.4 Example

Consider the fixed-point iteration for g(z) = sin(wx/2). Le. we iterate z,41 = sin(mwz,/2) with
xo = 1.5 and there are 3 fixed points: z* = —1,0,1 (easy to see graphically by drawing y = x
and y = sin(7z/2) and noting 3 intersections).

32

We note that ¢/(1) = 0 and ¢”(1) = —72/4, so order of convergence is 2 (quadratic) and asymp-
totic error constant is 7%/8 ~ 1.233. This is confirmed by numerical results:

n Tn | en=z,—1]|len|/len1]?
0 || 1.500000000 0.5

1] 0.707106769 | —0.292893231 1.1715
2 || 0.896018863 | —0.103981137 1.2120
3 || 0.986690760 | —0.013309240 1.2309
4 11 0.999781489 | —0.000218510 1.2335
5 | 0.999999940 | —0.000000059 1.2483

Remark: The scheme cannot be used with a different zy to converge to the fixed point z* = 0
since ¢'(0) = /2 > 1. Using x¢ < 1, the scheme converges to z* = —1.

3.3 Newton-Raphson method
The Newton-Raphson method?®, or simply Newton’s method, is one of the most powerful
and well-known methods for solving a root-finding problem of the form f(z) = 0.

Let z* be a solution of f(z) =0 and let x,, be a close approximation such that |z, — z*| is small.
We assume f € C?[a,b] and z*, z,, € [a,b] and use Taylor’s theorem to obtain

F@*) = o) + F) =) + 51 (E @)@ —)
where £(z,,) lies between z* and x,,.
Now if |z, — 2*| < 1 then |z, — 2*|* < |z, — z*| justifying the approximation
0 f(zn) + ['(2n) (2" — 2n).

Solving this equation for x* results in

r =Ty — f/(gjn)

Sdeveloped in the 17th century by Isaac Newton (1641-1727) and Joseph Raphson (1648-1715)

33

This approximation suggests we define the RHS as a new approximation to z*, leading to New-
ton’s method:

Tn+1 = Ty — .
f(@n)
It corresponds to a fixed-point iteration of the form x,,; = g(z,) under the definition

@
/@)

(6) g(x) =

Remark: Newton’s method can also be derived /motivated by graphical considerations.

3.3.1 Order of convergence of Newton’s method

We know from a theorem in the last section that the order of convergence of a fixed-point iteration
scheme is determined by how many of the first derivatives of the function g(x) vanish at the fixed
point z*. For Newton’s method we calculate from (6) that

=1 fr _SPUT L — FFRF T
f/2 f/2 ’ f/4
If we assume that z* is a simple zero of f(x), meaning that f(z*) =0 and f'(z*) # 0 then

S (™) f" (@)
()]

g//(x)

(7) g(x) =1~

g'(x") = =0

WhllSt / *\3 £/ * " *
ey - @))

()t f'(¥)
The second derivative ¢”(z*) is (in general) not zero and so of Newton’s method is typically of
quadratic order (for simple zeros). This is considered fast: g4(z) earlier was an example of the
application of Newton’s method to the function f(z) = 2% —z — 1.

We now ask how robust the method is. In particular, how does the choice of xy affects the success
of the method.

34

3.3.2 Region of convergence of Newton’s method

Theorem: Let x* be the fixed point of g(x) with ¢'(z*) = 0 whilst we assume |¢"(z)| < M on
an open interval, I, containing z*. Then 36 > 0 s.t. for all zy € [z* — J, 2" + §] C I the sequence
ZTnt1 = g(x,) converges at least quadratically to z*. Furthermore, for n sufficiently large,

M
|Tpy1 —2¥| < 7|$n — 2

Proof: Choose k € (0,1) and § > 0 s.t. for x € [2* — 6, 2% + 9] C I, |¢'(z)| < k (this is possible
since ¢'(z*) = 0 and ¢'(x) is assumed continuous). Since k < 1, g(x) € [x* — §,2* 4+ 0]. Le. the
conditions of the FPT are met and hence the method converges for =g € [z* — 0, 2* + J].

We found previously using Taylor’s theorem that when g(z*) = 0,
* 1 " * |2
|[Tpy1 — 27| = §|9 (&) [2n — 27|
where &, lies between z,, and z*. Using the bound for the second derivative we obtain
1 M
ewnl = 210" (60 162] < - leal®.

Provided |e,| < 2/M, |e,11] < |en| and and hence quadratic convergence is guaranteed.

3.3.3 Non-simple zeros

Defn: A solution z* of f(z) = 0 is said to be a zero of multiplicity m if

0=f@@) = f(&) = .= fm V@), FE) £o.

Zeros with m = 1 (the usual case, where f’(z*) # 0) are called simple zeros.

We consider now how zeros of multiplicity m > 1 (non-simple zeros) affect the convergence of
Newton’s method. By Taylor’s theorem,

(m) (¢(
FE) (o —

- = g() (v —)"

®) =Y I -+

35

since all the terms in the sum now vanish and where £(z) € (z,2*) and q(z) = f™(&(x))/m!.
such that ¢(z*) # 0.

It follows that the derivatives of f(z) are given by
f'(z) = mg(z)(z — 2*)" + ¢ (2)(x — 2*)™,
f"(x) = m(m — Dg(x)(x — 2*)""2 + 2mg' () (z —)" + ¢"(z)(z — 2*)™.
Using (7) for m > 1 we have, with the expressions above for f, f' and f” and taking the limits

oy o JE@) _mem—1) 1
g(@*) = Il_m [f(2)]2 m2 1 m 7 0.

That is, if m > 1, and the root is non-simple, then Newton’s method converges only linearly.

3.3.4 Example
Consider f(z) =e” —x — 1, which is zero at * = 0. We also note that
fl(z) =e"—1=0, f"(x) =e" #0, at * =0

so * = 0 is zero of multiplicity two (m = 2). The table below shows how Newton’s method
converges only linearly for this function.

Tn |€nl/]€n-1]
1.00000000
0.581976771 | 0.581976771
0.319055110 | 0.548226535
0.167996019 | 0.526542306
0.086348965 | 0.513994098
0.043796084 | 0.507198691
0.022057412 | 0.503639042

DU R W NN = O3

36

3.3.5 Reinstating lost quadratic convergence

In the case a root z* of f(z) is not simple resulting in linear convergence of Newton’s Method,
quadratic convergence can be restored by applying Newton’s method to

F(x) = f(x)/f'(z)

which implies the following iteration scheme

F(z, , 2 "
(9) T+l = Tn — %, where F' = =1 f’fo
and so
(10) R () €0

f/<xn>f/(xn) - f(-fljn)f”(xn)
in terms of the original function.

Proof: If f(x) has a zero of multiplicity m at © = * then f(z) = q(z)(x — 2*)™ with ¢(z*) # 0,
from (8). It follows that
g(z)(x —z7)™

FO) = @ — oy 4 @ —ayr - A

where

= q(z) i as T x*
) = Dt e@ @) m 7" o

Thus F(x) has a simple zero at z = x*, the same as the zero of f(x), and (9) therefore has
quadratic convergence.

Remark: Since f(z,) and f'(z,) are very small as z,, — x*, (10) is a scheme in which the
product of small numbers are divided by small numbers and this is susceptible to rounding
errors.

37

3.4 Aitken’s method

Aitken’s method (or the A%-method) can be used to accelerate the convergence of any linearly
convergent sequence, regardless of its origin.

Suppose that {xg,z1,...} is a linearly convergent sequence with limit * and asymptotic error
constant A < 1. Then
1- |‘Tn+1 B x*|
im ————

n—00 ’an — x*|

=A< 1.

We therefore expect that
Tpe1 — TF
‘ +1 | ~ \
|0 — 2]
for sufficiently large n. The approximation would therefore also hold when n is replaced by n+1,
and so, dropping the modulus (with a certain amount of care), we claim that

Multiplying across by the denominators gives

(Tnp1 —) = (Tnye — 2°) (2 — 27)

2 * *\2 o * *\2
— Ty — 2T, 2" + (27)° R Tpgotn — 2 (Tngo + 20) + (27)
and solving for z* results in

2 2 2 2
Lnt2Tn — Tpi Tpp1 — 2Tn11Tn + T, (Tnp1 — Tn)

(11) S =x, — =x, —)
Tny2 — 2xn+1 + Tn4+2 — 2xn+1 + Tny2 — 2xn+1 + T,

This can be written more compactly using the notation of a forward difference operator
Ax, = Tpi1 — Ty
since then we have
Az, = A(Azy,) = AT — 2n) = AZpyy — ATy = Tpyo — 20511 + Ty

and (11) becomes

Thus, we denote a new sequence {Z,} by defining

A

Ty & Ty —

whose convergence can be shown to be faster than linear (see, for example, Burden & Faires).

3.4.1 Example

Use Aitken’s A2-method to improve the convergence to * = 0 of the linearly convergent sequence
x,, for Newton’s method applied to f(x) = e* — 2z — 1. The final column shows that z,, converges
quadratically to zero compared to the original sequence. Note the onset of some round-off errors
which are due dividing small numbers (Ax,)? by small numbers A%z, (also later in Section 5).

(Axn)Q

A2z,

n n n |Znl /|20 2]”
0 || 1.00000000 | —0.126638770 1.2440

1| 0.58197677 | —0.035993993 1.2753

2 || 0.31905511 | —0.009689718 1.2995

3 || 0.16799601 | —0.002521470 1.3145

4 1 0.08634896 | —0.000646777 1.3293

5 || 0.04379608 | —0.000167448 1.3669

6 || 0.02205741

7 1| 0.01106787

3.5 Solving systems of nonlinear equations: Multi-dimensional New-

ton’s method

We consider now methods for solving systems of n nonlinear equations for n variables which we

express as

(12) fi(l‘l,.’L'Q,...,,In) =0

39

fori=1,....n

or, in vector notation,

f(x) =0, f = (fl,fz,...,fn)T, X = (a:l,xg,...,wn)T.

This is generally a difficult problem and, unlike linear systems of equations, and there are no
good general methods systems of nonlinear equations.

To understand this complexity consider the case in (n = 2) two dimensions where (12) can be
expressed (fi = f, fo =g, 11 =z, z3 = y) as

flz,y)=0 and g(z,y) =0.

Both equations define curves in the xy-plane and the simulateous solution of both equations lie
at the intersections of these curves. Thus, the simplicity in one dimension of a line crossing the
axis is lost. The complexity of the picture described above increases further for n > 2.

However, once the neighbourhood of a root is located, there are methods of converging to the
root. Newton’s method is the most widely used of these®

Let the solution of (12) be given by x*, such that f(x*) = 0. Assume that x(™ is a good
approximation to the solution such that |x(™ —x*| is small. Then we use Taylor’s expansion in
n > 1 dimensions’

O ~ 0°f; (m) 2
i (m) _ x* ‘ * h.o.t
fi(x*) =) + Z (9.7:] (z} a: ;; axjaxk —x;) (z) —)+ h.o.
(higher order terms) for i = 1,2,...,n. The double sum includes products of terms assumed to

be sufficiently small that they can be neglected.
What remains can be expressed in matrix/vector notation as
f(x*) ~ £(x™) + J(x™)(x* —x™)

where J(x) is the Jacobian matrix,

24 24

8_JJ1(X) o 8xn (x)
J(x) =

(9fn 8fn

90,) g ™)

5One can also generalise fixed-point methods to higher dimensions.
"(Multivariable Calculus course)

40

Since f(x*) = 0 we have
x* e x(™ — JH(x ™) F(x™),

This suggests the following iteration scheme (multi-dimensional Newton’s method)
x(m) — x(m) _ =1 (x ()£ (x(m) m=20,1,2,...
subject to a sufficiently good initial guess x(©.

Note that we can avoid evaluating the inverse matrix J~! by setting

() — () m)

where y(™ can be determined as the solution of

using, for e.g., Gaussian elimination.

Remarks: As in one dimension, Newton’s method has, in general, quadratic convergence (no
proof), but there are two disadvantages of the method:

(i) The method may not converge if the initial approximation is not good enough;

(ii) The Jacobian matrix of partial derivatives, J, must be evaluated at each step. Evaluating
the Jacobian of f(x) may be difficult analytically, numerical expensive or impossible (if
f(x) is not explicit).

3.5.1 Example

Consider
v+ =4, xy = 1.

First, write fi(z,y) = 22+ y?*—4 and fy(x,y) = xy — 1 so that system of equations is represented
by f1 =0, foa =0.

Note that the curves of f; = 0 and f, are represented by a circle of radius 2 and hyperbolae passing
through (1,1) and (—1,—1). In this way, we can see there are four roots placed symmetrically
about the z- and y-axes.

41

We can find these roots exactly by eliminating between the two equations. Substituting y = 1/x
into the first equation gives
vt — 427 +1=0

which is a quadratic for 2% and so

2 =(4£V16—4)/2=2+V3

2 = +4/24+ V3 = £1.9319, +£0.5176

and then y* = +0.5176, £1.9319 are the four roots.

meaning that

Now let’s use Newton’s method. We need

2r 2y _1 1 r —2y
J = — J = .
[Y 37] 222 — 22 {—y 2x
Note: this fails when det{J} = 0 and this happens when x = +y. The vanishing of the
determinant of the Jacobian indicates that x lies on a critical point and is the multi-dimensional

equivalent to the vanishing of f’(z), which results in the failure of the one-dimensional Newton’s
method.

Choose, for example, x(©) = (2,0)” which is close to one (+/+) of the four roots. Then Newton’s

method gives us
1) 2 12 0 0
X = _ =
0 {8 |0 4] \—1

the last vector being f evaluated at x(?). Then we find

2 1.9333 1.9319
0 2 _ 3 —
T (0.5) T (0.5167) T (0.5176)

and we have converged to 4 significant figures after 3 iterations !

3.6 The steepest descent method (the gradient method)

THIS SECTION IS OMITTED FROM THE COURSE IN 2025

42

This is a so-called global method that does not necessarily require a good initial approximation,
but the convergence can be quite slow. The idea is to transform the root finding problem into a
minimisation problem. Consider

(13) o) = 3 f2(x) = 0

The function g(x) has a minimum at x* with value g(x*) = 0 if and only if f(x*) = 0.
The method is described by the iterative step
(14) x(mH) = x(M _ o Vg(x™), m >0

for a given initial guess x(© where

B dg dg \
—Vg = (_axl’”"_axn)

is minus the gradient of ¢ and points in the direction of steepest descent®

In (14), a,, determines how far we move from the position x(™) along the straight path in the
direction of steepest descent. This is determined by requiring the value of g on that path is
minimised. In other words we should only move in the direction —Vg for as long as we are
descending.

le. @ = a, is determined from

dh

T da

(15) 0

where
h(e) = g[x™ — aVg(x™)].

Determining solutions of (15) are often complicated and crude methods are often sufficient as
one need not be precise about the value of «,, to make the method work. For e.g. on might
calculate h(«) for a few values of @ and use the last value before h(«a) starts to increase.

8(Multivariable Calculus) E.g.: if x = (,y) then g(x,y) can be interpreted as the height of a three-dimensional
surface and, for any point (z,y), —Vg points in the horizontal (compass) direction in which you will descend
most rapidly. It is perpendicular to the contours of the surface on a map.

43

Remark: The method always converges to a minimum. This may be the global minimum
where g(x) = 0, or it may be a local minimum where g(x) # 0. That is, it is possible for the
method to fail to find the root x* if convergence is not to the global miniumum.

3.6.1 Example

Apply the steepest descent method to the system of two equations
P4 ri—4=0, mmy—1=0
with an initial guess x(® = (2,0) (the same example as Section 3.5.1).
Using (13) we define
g1, 0) = f2+ f2 = (23 + 25 — 4)* + (z129 — 1)?
so that g is minimised to zero at the solution. Now

Vo 4oy (23 + 23 — 4) + 2w9(z110 — 1)

So, the first iteration is

2
xW = xO — 0 Vg(xV) = (0) T (?1)

after substitution of x(® = (2,0). In order to find ay we consider
h(a) = g[(2,4a)"] = (16a*)* + (8a — 1)? = 256a* + 64a® — 16 + 1.
To find the minimum, set
0 =h'(a) =4 x 256a° + 2 x 64a — 16

or
0 =640+ 8a —1

and we can determine numerically that is has a root ay ~ 0.1133. Hence

2
1) &
* (0.4532)

44

as our first iteration towards the root. The next step is the same as above, but using x(!) instead
of x(O). This is now a numerical process, not something that is feasible by hand. For completeness

we find
1.946
@) A
* (0.501) ‘

Recall the exact root was x* = (1.9319,0.5176)7.

Remark: Convergence is slow. Why 7 gradients of g are zero at the solution, x*, which is when
1D Newton’s method became linearly convergent.

45

4 Interpolation: approximation of curves by polynomials

A continuous function is an abstract idea and a computer only records information about a
function f(z) at discrete points z = x;, i = 0,...,n (say). Interpolation addresses the fact that
we often need to know about f(x) at values x # z;. Interpolation addresses how to join data
points on a graph with a smooth curve.

4.1 Polynomial approximation

If there are n + 1 points (x;, f(x;)) then we imagine we can fit a polynomial of degree n through
the points.? T.e. we represent f(z) by

Po(2) = apz™ + ap_12" ' + .. 4 ayx + ag.
And then determine a; by setting P,(x;) = f(z;) at © = x;. Le.

an®? + ap 2P+ ayw +ag = f(g)

fori=0,1,...,n. Le. we have n + 1 equations for n + 1 unknowns. We can write this as
1 zg o3 -+ af o (o)
1 oz 22 - af ap | _ f(x1)
Iz, *T?z Ty, an f('rn>

This matrix is a special type called a Vandermonde matrix. Suddenly this seems like a difficult
task... but

4.2 Lagrange interpolating polynomials

Consider first n = 1 (motivation). Define

T —
L1,0(IE) = :) L1,1($) =

To — X1 Ty —xo

r — 2o

9This is not the only way of curve fitting: see Burden and Faires

46

s.t. Lyo(zg) =1, L1 o(z1) = 0 and similarly for the other function. Then

(16) Pi(z) = Lio(2) f(w0) + L1 (2) f(21)
is indeed a degree 1 polynomial which passes through (z, f(x¢)) and (z1, f(x1)).
Now consider
“ (- xy)
Ly(x) = —
,k() 11 (xk — xl)
!

..

is a polynomial of degree n s.t.
0, if 1 £k
Ln,k(xj):{ 1 ifj—k}: ik

(the Kronecker delta.) Then

n n n

a Pu) = 3 Lustten) = 3 e [] 272
k=0 k=0 5;2 i

is a polynomial of degree n s.t.

n

Py(x;) =Y Lug(x))f(zi) =Y dnf(xr) = f(z)

k=0

for j = 0,1,.... L.e. we have determined the interpolating polynomial without solving a matrix
equation.'®

4.2.1 Error

Q: How good is P,(x) for x # x;, 7

Theorem: Let f € C"™[a,b] (f has n + 1 cts derivatives) and =y, ..., z, € [a,b]. Then

S (E(x)) T
(18) f(z) = P,(z) + ECESVE ':0($ — ;)

7

10T here are other ways of doing this: see divided differences in Burden and Faires

47

for some £(z) € [z, x,] C [a,b] (£ is generally unknown).
A: The final term in (18) represents the error in the approximation.

Proof: We first note that (18) is true if z = x4, k = 0,1,...,n. So consider x # z;, and define
g by

9(t) = F(t) = Palt) — (£ il tjf;

=0

iIZ’

Note that since P, is a polynomial and f € C"[a,b], then g € C"*1[a,b] also. First, note that
when t = x,

g9(xr) = 0— (f(x) = Po(z)) x 0 =0

for k=0,1,...,n. Second, note that when t = x

g9(x) = (f(z) = Pu(x))(1 = 1) = 0.

Therefore g(t) is zero at z, xg, T1, . . ., Tp, i.6. at n+ 2 distinct points. By the generalised Rolle’s
theorem, 3¢ € (a,b) s.t.

d(n+1) n —
0 = g"H(€) = I (g) — PIH(E) — (f(x) — i

ZIO t=¢

First, since P,(z) is a polynomial of degree n, its (n + 1)th derivative is zero. Also, the final
product is a polynomial in t of degree n + 1 and its leading term is t™*Y. So its (n + 1)th

derivative is
n
(x — xy)

1=0

We can now rearrange what is left to give (18).

4.2.2 Example

Consider fitting a polynomial of degree n to the curve f(z) =1/r at z; =1+i/n,i=0,...,n
(that is at equally spaced points between z = 1 and = = 2):

48

(i) Find P(z); (ii) determine a bound on the maximum error £ = max;<,<2{|f(x) — Pa(z)|};
(iii) determine the actual maximum error, F.
(i) From the definition of the Lagrange interpolating polynomial

(x — o) (x — 21)
(22 — o) (w2 — 21)

(x — o) (x — 22)
(21 — o) (21 — 22)

(x — 1) (x — x2)
(zo — 1) (w0 — x2)

Py(z) = f(wo) + f(z1) + f(x2)

and with o = 1, 1 = 3/2, x5 = 2 we have

(z=3/2)(z—=2) 2 (z-1(x-2) +1(:E—1)(:U—3/2)
(1-3/2)(1—2) 3(3/2-1)(3/2—2) 2(@2-1(2-3/2)

Pﬁ(m) =1

We just need to tidy this up:

1 1
Py(x) = 63_;9”5752
(i)
1 n
= - < (1) -
E = max{|f(x) - Pa(v)[} < max{|f (:r)|}(nJr ;e 11@).

So first we need f'(x) = —1/2%, f"(z) = 2/2 and so on. We can see that f™+Y(z) = (n +
DI(=1)"/2™*2. Tts maximum is when z = 1 and so now

E < max {|W(x)|}, where W(z) = H(m — ;).

1<z<L2

=0
To determine the maximum we differentiate (as usual).
For the case given: n =2, xy = 1, 1 = 3/2, 15 = 2 and
s 9,5 13
W(z)=(z—-1)(z—-3/2)(x—2)==x — 5T —|—7x—3

S0 13
W'(z) = 32* — 9z + °R
We solve W/ (x) = 0 to give = 3/24+/3/6 and both lie in [1, 2]. Now W (3/2++1/3/6) = F/3/36,

E <+/3/36 = 0.04811. ..

49

(iii) Note, in (ii) this was the bound on the error, because we didn’t know £. The actual maximum

error is
> 1 13 3:c+a:2
—max<|l-——| ———+ — .
T 6 2 3

1<2<2

This requires us to solve

which is a cubic (and so I find the answer numerically'!: x ~ 1.1890 and x ~ 1.7726 are both
roots in 1 < x < 2.) This gives

FE = max{0.01336,0.009006} = 0.01336.

This is (thankfully) less than the bound on the error !

045 i 15 95

Figure 1: Plot of 1/z and Ps(x)

Remark: The method of interpolation can suffer from instabilties (not due to rounding errors).
That is, as n increases and we add more interpolation points we want the resulting nth degree
polynomial to fit the data better, but this doesn’t always happen (see Burden & Faires). One
practical method is to fit a lower degree polynomial to the data.

HUHow ? In Section 3

20

5 Differentiation

This section refers to the numerical approximation to the derivative of a function f(z), say.
This is required if f is not known explicitly and is known or can only be calculated at discrete
points. The approximation of derivatives is also essential in the numerical solution of differential
equations (later in the course).

Our starting point is the definition of the derivative:

o) — i D) @)

h—0 h

and motivates what comes next. An equivalent approach would have been to use interpolating
polynomials to approximate derivatives and results in the same approximations with x; = zo£h
and z9 = x9 F h.

5.1 Difference formulae

Defn: (i) The forward difference approximation at = = z is

f(20) ~ f(zo + h})l — f(20)

for h > 0 (h will be used throughout the remainder of the course, always as a positive step size).

(ii) The backward difference approximation is defined as

f(xo)—f(l‘o—h)_

[(o) = .

Q: We expect that as h — 0 the approximations improve. How ?

A: Assume that f € C?[a,b], zo, 70+ h € [a,b] and h > 0. Then from Taylor’s theorem

Flao + 1) = Fao) + b £'zo) + (0

for some £ € (xg,x9 + h). The last term is a remainder term and collects together all the terms
in the Taylor series approximation.

o1

Solving this equation for f'(z¢) results in

flzo+h) = flxo) h

/ o _ en
) = H S1"(©)
and so the error associated with the forward difference approximation is
h’ 14
B = B(h) = ~5 (€)= O(n)

and we say that the error is of order h. Note that £ depends on h also.

Remark: We refer to E as the truncation error because it arises from the truncation of the
Taylor series expansion.

Exercise: Find the truncation error in the backward difference approximation and show it is
also O(h).

Defn: Since £ = O(h) we say that the forward/backward difference approximation are are
first-order schemes.

5.1.1 Central differences

If we use more than two evaluations of f we should get better approximations.

Defn: A three-point central difference approximation for f'(zy) is assumed of the form
f'(@o) & af(xo + h) + Bf(zo) +vf (20 — h).

The aim now is to determine «, (3, v to minimise the error (as a function of h) between the exact
value of the derivative and its approximation:

E(h) = f'(xo) — [oof (w0 + h) + Bf(x0) + 7S (xo — h)] .

52

We assume f € C3[a,b], 29,79 = h € [a,b], and h > 0 and apply Taylor’s theorem
h? h?
BN = fan) — | oo+ f (o) + 5 o) + 5 £(6)
h? h?
(19) —Bf(z0) =7 {f(xo) — hf'(w0) + ?f”@o) - gf”/(&)]

and & € (xg,z0+h), & € (ko — h, xg). There’s some skill/luck in deciding where to truncate the
Taylor series. You only know if you’ve done it right when you get to the end of the calculation.

Now we have

B(R) = Flao)a+ B+ 7) + Fao)(L— ha-+) — o fa)(a+9) - o (6) — ()]

We set the coefficients of f(x¢), f'(x¢) and f”(zo) to zero to give three equations for our three
unknowns
a+pB+v=0, hla —7v) =1, a+v=0

whose solution is

Thus we have found that

(20) f'(xo) = +E(h)

where the truncation error is

2

E(h) = _%[fm(&) + ["(&)].

Using the intermediate value theorem!? (IVT) we can conclude that there is a point & € [£, &]
that takes the value

7€) = 517(&) + (@)
and thus & € (xg — h,xo + h).

12That is, if f"/(z) is continuous and takes the values of f”/(£;) and f"'(&) at @ = & o then it must pass
through the averages of the two values for some & between &; and &s.

53

Therefore we find that the error of the approximation is

B = - p76) = 00,

and the approximation (20) is thus said to be a second-order scheme.

Remark: (20) is called the central-difference approximation to the first derivative and in
spite of allowing ourselves three points to evaluate f(z), the scheme only requires two.

5.1.2 Second derivatives

Defn: The three-point central difference approximation for f”(x() follows in a similar
way. Note that we certainly need at least three evaluations of f to determine curvature. We
write

f(@o) = af(xo+h) + Bf(x0) + v f(wo — h).
Then the error is
E = f"(x0) — [af(xo +) + Bf(x0) +vf(x0 — D))

and we aim to choose «a, (3, 7 to minimise F as a function of h.

Assuming f € C*[a,b], xo, 2o £ h € [a,b], and h > 0: we now have to include one more term in
the Taylor expansion (for reasons that become clear)

2 3 4
B = o)~ | o)+ f (o) + 5 o) + £ (aw) + 37060
2 3 4
(21) ~6an) = | o) = o) + 5 £ (an) = 1) + 5 76|
Now we have

B(R) = flzo)(a+ B+7)+hf o) —) + 57" z0)(L+ o+ 1) = & P @) o~)

6
h4

—ﬂ[af(iv) (&) + (&)

o4

We eliminate coefficients of f(xg), f'(z0), f”(x0) to give three equations for the three unknowns:

2

h
a+p+v=0, a—v=0, 7(044—7):1.

The solution to this system of equations is given by
1 2 1
- ﬁa B = _ﬁ7 Y= ﬁ

Note that the coefficient of f”/(x¢) also vanishes in this case (this is why we went to an additional
order in the expansion) and this means that

(o) = f(xo+h) — Qf}(L;Eo) + f(xo — h) + E(h)

where)

B(R) =~ [19(60) + 1 (e)] =~ 19¢) = o(n)

with & € (xg — h, o + h) after using the intermediate value theorem (IVT) as in the previous
section. This approximation is a second-order scheme.

Remark: There are many possibilities to generalise these approximations including:

(i) Forward difference formulas (using for e.g. xq, xg + h, xo + 2h);
(ii) Backward difference formulas (using for e.g. x¢, zo — h, xo — 2h);

(iii) Formulae which use more points or points distributed unevenly.

5.2 Round-off errors

According to the formulae we have developed, theoretical errors, E(h), can be made arbitrarily
small by choosing h sufficiently small. In practice, however, numerical calculations on a com-
puter with finite-precision accuracy limits the size of h because of round-off errors. This is true
in all such schemes we encounter whose accuracy is related to a step size, h, but numerical
differentiation is particularly vulnerable to rounding errors because of the nature of the calcula-
tions involved. That is, it requires us to take differences of almost equal numbers to leave small
numbers which are then divided by small numbers (h or h?).

The issue is best illustrated by an example.

95

5.2.1 Example

Consider the central difference approximation to the derivative. L.e.

0 h) — O_h h2 "
fi(ao) = LI TC BBy

for some & € (xg — h,xo + h). The final term is what we have called our truncation error, E(h).

Consider now the effect of making small errors in the calculation of the approximation. That is,
assume that the exact values are given by

flwo+h) = f(zo+h) +e(zo+h), flzo—h) = fxg—h)+e(zg — h),

~

finite-precision calculations (f(z¢ £ h)) and round-off errors (e(zo £ h)). These round-off errors
are bounded by machine accuracy (see definition in Chapter 1):

le(wo £ h)| < el f(wo £ h)|
(and € ~ 10716 for devices with 64-bit storage).
The total error FE;(h) is the sum of the round-off errors and the truncation error

e(xg+h) —e(zg—h) h?,,
- e

Assuming that h is small enough for f(zo £ h) =~ f(x¢) and for f”(§) ~ f"(x), standard
inequalities give us

Et(h) =

2 2
B | < i@l | b

6(1‘0 + h) 6(1‘0 - h) " "

E < .

) < | [AZ 2l 1 g A 2
Miminising the total error as a function of A requires
(22)

d (cf(x) B, el (o)l , Bl (o)l 3¢l /(o)) *
=—|—F+= = — h=he = | —7— :

0 1 (h + 6 / (.Z‘()) 12 + 3) = pt |f”’(l‘0)|

This gives an estimate for the optimal choice of A which minimises the total error.

Remark: This result is not universal: it depends on the scheme being analysed.

o6

h E,

0.01 —0.84 x 1072
0.001 | —0.84 x 1074
0.0001 || —0.84 x 1076
107° | —0.54 x 1078
10-¢ 0.74 x 10710
1077 | —0.25 x 107
1078 0.21 x 1077

Numerical experiment: Use central difference formula to approximate the derivative of f(z) =
2% at x =1 with h = 107™, m = 2,3,...,8 and deduce the error (the exact result is f'(1) = 9 of
course).

We performed this calculation on a PC with 64-bit storage: so let’s say € = 10716, We see that
the error initially decreases with h, proportional to O(h?) as predicted by the truncation error.
However, for values smaller than h ~ 1075 we notice that the errors start increasing. We now
understand this to be the effect of round-off errors dominating the truncation error.

According to (22), we have |f(1)| =1, |f"(1)| =9 x 8 x 7= 504 and so

3 x 10716\ /3
By = | = ~0.84 x 107°
vt (504) 8

which agrees with the tabulated results.

Remark: The mimimum error of 1071% in the table of approximations sounds OK, but remember
that we started with calculations accurate to 10716 and so we’ve lost 5 decimal places accuracy
in just one calculation. And it’s even worse for second derivatives.

Q: What can be done to to reduce the error?

A: Higher-order formulae (e.g. using more points). Or...

o7

5.3 Richardson extrapolation
Richardson extrapolation'® is a general method that is useful across many areas of Numerical

Analysis. It can be used whenever we know how the error of an approximation depends on a
parameter h of the approximation (usually h is a step size).

5.3.1 Illustration of the method

Assume that an exact quantity N is approximated by an expression Nj(h) and it is known that
the error has a power series expansion in h

(23) N:Nl(h)+a1h+a2h2+a3h3+...
The coefficients a;, 1 = 1,2, ... are constants that may not be known analytically or even numer-
ically.

We now halve the step size to obtain another approximation for N:

h h h? h?
(24) N:N1(§>+a1§+agz+a3§+...

Now we notice that the combination 2x(24)—(23) eliminates the leading order O(h) term in the
error, thus:

ON — N = [QNl (g) - Nl(h)] . %hQ - %hf” .
In other words we have
(25) N = No(h) + boh® + bsh® + . ..
where
(26) Ny(h) = 2Ny(h/2) — Ny(h)

13 After Lewis Fry Richardson (1911) “The approximate arithmetical solution by finite differences of physical
problems including differential equations, with an application to the stresses in a masonry dam” , though he was
better known as a pioneer in the development of modern methods for weather forecasting.

o8

and by = —ay/2, etc (since the values of a; were unknown and unimportant, then redefining them
as b;’s is OK).

I.e. we have obtained a new approximation, Nyo(h), to N which is O(h?) accurate by using
calculations of N; accurate to O(h). It’s like magic.

This process can be repeated. Consider halving h again in equation (25):

h R RS
(27) N—NQ(§>+bgz+b3§+...

Now the linear combination 4x (27)—(25) eliminates the O(h?) term thus:

h 1
4N — N = 4N, <§) — Ny(h) — 5bghi’wr...

In other words we have a new approximation
Lo
N:Ng(h)—gbgh +...

where

(28) Ny(h) = % [4N2 (g) - Ng(m}

is accurate to O(h%). Using (26) in (28) results in

Ny(h) = % {szvl (%) _ 6N, (g) + Nl(h)}

in terms of the original approximation scheme N;. The advantage of this method is that one
can get much higher accuracy with relatively large values of h and therefore avoid the onset of
round-off errors.

Remark: Instead of halving h at each step we can also double it as we will see in later examples.

29

5.3.2 Example

Consider the central difference approximation for the derivative f'(zg)

f(fb’o—i‘h)—f(fl?o—h)_h_2

f'(wo) = 2 6

f///(f))

Note: the value of £ € (xg — h, g + h) in this formula depends on A, so this formula is not a
complete expansion in powers of h.

We can, however, obtain a complete expansion in h by returning to (21) and, instead of truncating
the expansion of f(zo £ h), produce a full a Taylor series expansion. This results (check) in

— _ o 2k
f’(%) _ f(ZUO + h) 2hf<$0 h) _ ; (zkh+ 1)!f(2k+1)(370)-

Notice the sum is over even powers h?, h* etc and so this relation may be expressed as
(29) N = Ny(h) + ash® + ash* + agh® + . ..
since we are attempting to approximate N = f’(xg) with the scheme Ny (h) = (f(zo+h) — f(xo—

h))/(2h) and we have no idea what all the higher derivatives of f are, hence the coefficients a;
are unknown.

We halve the step size to obtain another approximation for N

(30) N =N, (g>+a2 (g>2+a4 (g)4+a6 (g)6+...

The combination (4x(30)—(29))/3 gives

Qg 3 4 Qg 15 3
1 N = N — | —= — | ==
(31) Q(h)+3 (4h>+3 (16h +

where

is now accurate to O(h?).

60

Exercise: repeat the process and halve h again in (31) to get N = N3(h) + O(h%) where

Ny(h) = % [16]\[2 <g) _ Nz(h)} |

and hence in terms of N; only

Ny(h) = — [64N1 (%) 20N, (ﬁ) + Nl(h)} |

45 2
E;
W) = Ni(h) [) — Na(h) | J(1) — Na(h)
0.01 —8.4 x 1073 3.1x 1077 —3.9x 10713

0.005 —2.1x1073 1.9 x 1078
0.0025 || —5.2 x 1074

E.g.: Consider previous example f(z) = 2 with 2o = 1 and h = 0.01. We calculate N;(0.01),
N1(0.01/2) and N;(0.01/4) and this allows us to compute the total error (recall, the best we
could do without extrapolation was F; = 1071 with h,, = 107% now we get F; under 102
with a smallest value of h = 0.0025.

61

6 Integration

Many integrals cannot be evaluated by hand and require numerical methods. Numerical integra-
tion methods are often referred to as quadrature. They involve evaluating continuous functions
at discrete points x;, say, and weighting their contribution by ¢;, say:

I:/ f(x)dx%Zczf(xz)

We start with methods that replace the integrand with a Lagrange interpolating polynomial
which can be integrated explicitly.

6.1 The trapezoidal rule

Our simplest approximation to the integral I uses the linear Lagrange polynomial with g = a,
T = b:
(x —b) (x —a)
P, = b).

Recall that

1) =)+ 2 o aye)

for some £ € (a,b) includes the exact error term.

Thus we obtain

b b b
I:/ f(:):)dxz/ Pl(x)dm—I—%/ f"(&(x)) (x — a) (x — b) dz.

The integral over the polynomial can be easily evaluated and results in

[A= [JE i+ L)

b
b—a b—a

f(b).

a

For the integration of the error term we need...

62

Theorem: The weighted mean-value theorem for integrals. Suppose f € Cla,b], g is
integrable on [a, b], and g(z) does not change sign on [a, b]. Then there exists a number ¢ € (a, b)
such that

[rwawar =5 [o

Proof: Omitted (but a useful case is to consider g(z) = 1 where we can see how the result works
graphically).

. Now assume that f € C?[a,b] and define g(x) = (x — a)(x — b), noting that g(z) does not
change sign in [a,b]. Then there exists a number £ € (a,b) such that

b b
3] @ @-a@-na = 370 [@-a@-bd

= Jreu-o -1t
1 3 el
- Lo

(1st step is a change of variable x — a = (b — a)t). Let us express the result with a = ¢, b = 14
and h = x; — xo, where z; > x,

[r@as = 50 +) - 156

where £ € (29, x1). The name of the method arises from the fact that the area under the function
f(z) is estimated by a trapezium (the first term in the above, the second term is the error).

6.1.1 Composite trapezoidal rule

The trapezoidal rule does not, in general, give a good approximation unless h is small. The
composite trapezoidal rule divides larger intervals into smaller subintervals to which the
trapezium rule is applied.

Consider an interval [a, b] that is divided into n equal subintervals of length h = (b — a)/n and
denote the borders of the subintervals by x; = a +th, i =0,1,...,n.

63

Applying the trapezoidal rule to each subinterval gives

n

b 3
1= [orde =305 (Flan) + 1) - 151760

=1

where z;_1 < & < z;. We can use the intermediate value theorem to simplify the sum over the
error terms:

1 - " e .
E;f(&)—f(f)a n= h

for some £ € (a,b). For the application of the intermediate value theorem we used the fact that
the average of the error terms must lie between the minimum and the maximum of the error
terms. Thus the final result can be written as

b
I:/ flz)de =T, + E,

where

T, = & [7(a0) + 2 (e0) 4 2f(22) + .+ 2/ (1) + f(a)

is the composite trapezoidal rule and

h2 "
B, ==55b=a) ['(©)

where £ € (a,b) is the global truncation error.

Remark 1: Although the local truncation error for each subinterval is —h3 f”(&;)/12, the global
truncation error is E, = —h%*(b — a)f"(£)/12 since it accumulates error from n = (b — a)/h
contributions.

Remark 2: In the global error the term £ is a function of h. One can derive a complete expansion
of the error term in powers of A similar to Section 5.3:

n:a2h2+a4h4+a6h6+...

64

6.2 Simpson’s rule

The trapezoidal rule can be improved upon by using a quadratic Lagrange polynomial to ap-
proximate f(z), i.e.

() = Pala) + 5 S OE) (o = w0) (@ =) (2 = 22).
where

flao) + T @) iy wmm)@mm) g,

($1 - ﬂUo) ($1 - IQ) (IQ - xo) (1‘2 - xl)

(x —21) (& — x9)
(zo — 1) (T0 — T2)

PQ(ZL’) =

We consider now the interval [a, b] and define zo = a, xo = b, and x1 = (294 x2)/2 (which divides
the interval into two equal parts) to specify the Lagrange polynomial. Furthermore the step size
is now h = (b —a)/2.

One can then prove the following

> h W
| @) de = S0 + 45 + fa)] - 55 £
where £ € (g, z2). This is Simpson’s rule's.

Remark 1: The first term on the right-hand side is obtained by integrating over the Lagrange
polynomial P,(x); this is not difficult but lengthy. The derivation of the error term, on the other
hand, is trickier. One expects the error term of order O(h?*) whereas it turns out, due to certain
cancellations, to be O(h®).

Remark 2: The error term is proportional to f)(z). This means that Simpson’s rule is exact
for polynomials of degree 3 or less. In other words, even though we have approximated f(z) using
a quadratic interpolating polynomial, Simpson’s rule exactly integrates all cubics polynomials !

Remark 3: One can continue using higher degree polynomials to approximate integrals: this re-
sults in the Newton-Cotes formulas'®. This process is, however, problematic due to Runge’s

“pamed after Thomas Simpson (1710-1761)
named after Isaac Newton and Roger Cotes

65

phenomenon!®. It occurs if one uses high-degree polynomials to interpolate a function at

equidistant points since it can be shown to lead to oscillations at the edge of the interval
similar to Gibb’s phenomenon'” when using Fourier series.

In conclusion: increasing the degree does not always improve the accuracy. It is better to use
the trapezoidal rule or Simpson’s rule over subdivisions of intervals.

6.2.1 Composite Simpson’s rule

Similar to the composite Trapezium rule, we divide the integration range [a,b] into smaller
intervals and apply Simpson’s rule to the subintervals. Note that we need an even number of
subintervals, because Simpson’s rule involves pairs of subintervals.

Divide the interval [a, b] into n (even !) subintervals and set

h—
h = a, x; = a+ih, fi = f(xy), 1=0,1,...,n.
n

Applying Simpson’s rule to each pair of subintervals results in

I= [f@de = 1) +4fG) + fla)) - 5516

w| s

g L) + 47 () + flea)] - oo 1(@)

5

) + 45) +)] — 22 7006,

where n = 2m. The error term can again be simplified by using the IVT:
1 o .
— E () (¢} — fliv) h b).
m — f (51) f (5)7 whnere g S (CL,)
Thus, the composite Simpson rule is

b
I—/ flz)de =S, + E,

16 discovered by Carl Runge in 1901
1Tattributed to J. Willard Gibbs (1899) though originally discovered by Henry Wilbraham (1848)

66

where "
Sn = g [f0+4f1 +2f2 +4f3+2f4+ "-+2fn—2 +4fn—1 +fn]

with h = (b — a)/n, n even, and

— ht (b — CL) (iv)
P G

where £ € (a,b) is the global truncation error and is one order less than the local truncation
error for the same reasons as before.

6.3 Romberg integration
Romberg integration'® is simply Richardson’s extrapolation applied to the composite trape-

zoidal rule.

At the end of Section 6.1.1 we asserted (without proof) that

b
(32) I = / f(x)dz =T, + ash® + ash* + agh® + . ..

where T, is given by the composite trapezoidal rule. That is, the error is an even power series
in the step size h but the values of ag, are unknown and unimportant.

IDEA: We decide that n = 2™ for m sufficiently large (see Example 6.3.1), and instead of
halving h we decide to double h (and so halve n) at each Romberg step. In this way, we do not
need to make additional functional evaluations.

For the first Romberg iteration we do h — 2h (or n — n/2) to give
(33) I =T,/ + as(2h)* + as(2h)* + ag(2h)° + ...
so that 4x(32) — (33) gives

AT, T

*

T

(34) I +byh* 4+ bgh® + ...

18Romberg, W. (1955), “Vereinfachte numerische Integration” (vereinfachte translates to simplified)

67

for some by, whose values are unimportant. Now 7, ,S” is the first Romberg iterate and is accurate
to O(h?).

Remark: Written out explicitly

1 h
Tgl):§(4Tn—Tn/2) - g[2fo+4fl+4fz+4fg,+4f4+...+4fn,1+2fn]
2h
_F[f0+2f2+2f4+~--+2fn72+fn}
= Sn

is exactly Simpson’s Rule !

The process can be repeated (for as long as n can be sucessively halved). E.g. letting h — 2h
and n — n/2 again gives

(35) =T} +ba(2h)* + bs(2h)° + ...
so that 16x(34) — (35) gives
167" — 1)
I= = /2 L eahS 4
—_—————
T

and the second Romberg iterate T\ is accurate to O(hY). Etc.

Remark: One can show that the second iteration of the Romberg integration also corresponds
to a Newton-Cotes formula (i.e. derived from Lagrange interpolation with higher-degree polyno-
mials), but higher ones don’t. Importantly, Romberg iterates are more numerically stable than
the Newton-Cotes formulas.

6.3.1 Example

1
Evaluate the integral [= / " dx = 0.125.
0

Welet a =0,b=1, f(z) = 2" and write f; = f(x;) where z; = ih where h = 1/n and we choose
n=1,2,4,8,.... We use the following numerical methods:

68

(i) Tn = ih[fo+2fi +2fo+2f3+ 2fs+ ...+ 2fu_1 + fa] (composite Trapezoidal);
(ii) Sp %h[fo +4f1+2fo+4f3+2f1+ ... +4f,—1 + fu] (composite Simpson).
Trapezoidal Simpson
n T, E, Sh E,
1 0.5000000000 0.3750000000
2 0.2539062500 0.1289062500 | 0.1718750000 0.0468750000
4 11 0.1603393555 0.0353393555 || 0.1291503906 0.0041503906
8]| 0.1340436935 0.0090436935 || 0.1252784729 0.0002784729
16 || 0.1272742003 0.0022742003 || 0.1250177026 0.0000177026
32 || 0.1255693834 0.0005693834 | 0.1250011111 0.0000011111
64 || 0.1251423980 0.0001423980 || 0.1250000695 0.0000000695
128]| 0.1250356028 0.0000356028 || 0.1250000043 0.0000000043

Remark: We see that trapezoidal error drops by a factor of 4 as the value of n is doubled,
consistent with O(h?) error. The Simpson error drops by a factor of 16 on every doubling of n,
consistent with O(h?) error.

We now use the values of T, in the table above to compute successive Romberg iterates:

(iii) T = (475, — Ty, 2)/3 for n > 2 (and note that these are S,,);
7% — (16T7El) — Té})z)/15 for n > 4;
T = (647" — 1)) /63 for n > 8.

6.4 Problems in the evaluation of integrals

In many cases quadrature methods yield very good results. However, we may encounter situations
in which there are problems implementing methods which include the following:

e f(x) is discontinuous;

69

T,

)

7

o = NN =3

0.5000000000
0.2539062500
0.1603393555
0.1340436935

0.1718750000
0.1291503906
0.1252784729

0.1263020833
0.1250203451

0.1250000000

e f(x) has discontinuous or singular derivatives;
e f(z) has integrable singularities;
e f(z) is highly oscillatory;

e range of integration is infinite.

One normally has to devise a bespoke techniques to overcome the particular difficulty. These
often involve changing variables, dividing integrals into smaller parts, and explicitly removing
singularities. We consider some examples.

6.4.1 Example 1

Consider
I

dzx.
0 VT

Here the singularity can be removed with a suitable transformation of variables: x = t2, do = 2tdt

gives
1
I= / 2¢~" dt.
0

I =

6.4.2 Example 2

14+ x4

70

We divide the two problems up and write

I:/()l 11“(55) ~In(a) d:c+/01 In(x) dx+/loo In@) 4,

+ x4 14247

We can do the middle integral by hand (it equates to [zIn(z) — 2]} = —1). For the last integral
we make the change of variables x = 1/t to get

Lzt In(z) O log(1/t) (-1
[:—/ 4dx—1+/—4—2dt
o 14z L L1/t \ ¢
and the last integral simplifies to
"2 In(t
= / n) 4,
o 1+t
Putting everything together gives
[=—1- /1 (" +2D)In(@)
0 14 2t

and the integrand is smooth and bounded and can be approximated accurately using quadrature.

6.5 Weighted integrals

Another angle of attack is to factorise the awkward component of an integrand, w(x), say, from
the well-behaved part, f(z), say, by writing

I /abw(:v)f(:v) da

For example, we will later consider a = —1, b =1, w(z) = 1/v/1 — 2%

In order to move onto this next topic — Gaussian quadrature — we first need to develop the theory
of orthogonal polynomials, which will also be of use at the end of the course.

71

6.6 Orthogonal polynomials
Defn: An integrable function w(z) is called a weight function on an interval z € (a,b) if
w(z) > 0 for z € (a,b) but w(x) # 0 on any subinterval of (a,b). Thus w(x) can vanish at most

at finitely many isolated points in (a, b).

Defn: A set of functions {¢;, i = 0,...,n} is said to be orthogonal on an interval [a, b] with
respect to a continuous weight function w(z) provided that the inner product of ¢, and ¢,,

0, when ¢ # j,

«;, when 1 =7.

b
(36) (i, d5) = / w(z)gi(z)d;(r) dr = ;di; = {

Note that)
i = {61,01) = [wl@)éi(a)do >0

from the definition of w(x).
Defn: If, additionally, o; = 1 for each ¢ = 0,1,...,n the set is said to be orthonormal.

Remark: In everything that follows we establish properties that hold when {¢;(x), i =0,...,n}
is a set of orthogonal polynomials such that ¢; is of degree i.

6.6.1 Properties of orthogonal polynomials

Property 1: Any polynomial of degree k < n can be written as
k
(37) Pe(z) =) aidi()
i=0

Proof: Choose a;, such that the coefficient of z* on both sides of the equation are the same. It
follows that Py(z) — axdr(x) is a polynomial of degree (k — 1).

Pi(z) — ardr(x Z a;ip; (v

72

Now repeat the procedure to establish the result.

Remark: The coefficients can be calculated directly by using (36). Consider multiplying both
sides of (37) by w(z)¢;(x) and integrating over a < x < b. Then

k

k
Pk, ¢] Z a; ¢27 ¢J = Z CLZ‘OJZ‘CSZ']' = (leéj.
1=0

=0

b
a; = ai]/ w(x)Py(x)p,(x) de.

Property 2: ¢, (x) is orthogonal to any polynomial P(x) of lower degree, | < k.

It follows that

Proof: z
<Plu (bk) = Z ai<¢i7 ¢k> =
i=0

because 1 <[< k.
Property 3: The polynomial ¢ (z) has k distinct zeros in (a, b).

Proof: Let z = x;, i = 1,...,l denote all zeros of ¢y (x) of odd multiplicity in (a,b). The function

l

S(z) =[] (z —)

i=1
is a polynomial of degree | < k since ¢ (z) is a polynomial of degree k and therefore cannot have
more than £ zeros.

The function S(z) changes sign at the same positions as ¢g(x). This implies that the product
S(z)¢pr(x) never changes sign on a < x < b and consequently

(S, 60 = / () S(2)én(x) de £ 0.

From property 2 above it must be that S(z) is a polynomial of degree k and so | = k. This
conclusion also implies that x; are distinct.

73

6.6.2 Constructing a sequence of orthogonal polynomials

How do we construct ¢; for i = 0,...,n for a given interval (a,b) and weight function w(x) ?

That is, we want ¢;(z) to be polynomial of degree i such that (¢;,¢;) =0 for 0 <, 5, < n.

Defn: The requirements above only specify ¢; to within a multiplicative constant. To ensure
uniqueness one could make the set {¢;(z),i = 0,...,n} orthonormal, but instead we often apply
a standardisation condition. This is often, but not always, ¢;(1) =1 for all i = 0,...,n.

A manual approach

e First, ¢p(x) = 1: this is a polynomial of degree 0 s.t. ¢o(1) = 1.

e Next, ¢1(x) = Ajx + By is a polynomial of degree 1. We require (¢1,¢o) = 0 and this
means

Ai(x, ¢o) + Bi(1,¢9) =0

b1(x) = A, (x_ 213)

Imposing the standardisation ¢;(1) = 1 determines A;.

such that

o Next, () = Ayx® + Byx + Cs is a polynomial of degree 2. Now we require
0 = (g2, o) = Ag(2®, 1) + By(w, 1) + Co(1, 1)

and
0= (o, 1) = Ao(x?, 1) + Bolz, ¢1) + Ca(1, ¢1)

and, from standardisation used here A; + By + C5 = 1. That’s 3 equations in 3 unknowns
that can be solved for.

We can continue like this, but it gets complicated after the few terms.

74

6.6.3 The Gram-Schmidt process

But this can help...

Proposition: for £ >0

k

(38) Ori1(z) = Apa ($¢k Z xjk’fl) :

1=

Proof: (Inductive) First, assuming ¢y () is a polynomial of degree k then ¢y1(z) is a polynomial
of degree k + 1. Assuming the set {¢;(z), i =0,...,k} is orthogonal, we have from (38) that

k

¢k7¢l <$¢k7¢>
(D1, 05) = A (TPy, Oj) x ¢z,¢j>> =A ((m) — " <¢j»¢j>) =0
e o g ZX_; ¢z7 ¢z FH g <¢ja ¢]>

by (36). Hence ¢y is orthogonal to all other ¢;(x), 1 =0,..., k.

We can simplify (38) by noting that

b
(20, &) = / ()2 (2)dn(x) Az = (6. 2i) = 0. ifi < k—1

since x¢; is a polynomial of degree i + 1 and using the earlier Property 2.

So, in fact, only the last two terms in the sum in (38) are non-zero and (38) can be reduced to
a 3-term recurrence relation

(T ok, Or)
(k> i)

b1(x) = Ay (_ Ef,’ B)

and ¢o(x) = Ap such that Ay’s satisfy the standardisation condition.

(xPr, Pr—1)

(39) D1 () = Appr (Zwk() - (Pr1, Pr1)

(@00, 00 o,y ey

for kK > 1 with

This is the Gram-Schmidt process for determining orthogonal polynomials.

75

6.6.4 Example: Legendre Polynomials

Choose a = —1, b = 1 and w(x) = 1. Also let ¢; = P; (standard notation in the literature for
this choice) and use standardisation P, (1) = 1.

e First Py(z) = 1.
e Then

fjl z.1 da:')

P1<I'>:A1 (Z’ m
1+

so 1 = Pi(z) = A;.1 means A; =1 and P (z) = x.

o Next))
f_l r.x.xdr f_lx.m.ldx

Py(x) = Ay (x:v i x T
f_lx.xdx f_l 1.1dx
Applying 1 = Py(z) = As(1 — (1/3)) gives Ay = 3/2 so

3 1
PQ(.Z') = 53}'2 — 5

) = As(a® — (2/3)/2).

e And we can go on (it gets complicated). For e.g. Ps(z) = gx?’ — %x

Remark: The set {Py(z)} are called the Legendre polynomials. They satisfy a 3-term
recurrence relation

(k+1)Py1(z) = 2k + 1)z Py (z) — kPy—1(2)
(no proof) but consistent with (39).

6.7 (Gaussian quadrature

6.7.1 Introduction

Up to now the integral of a function has been approximated by a weighted sum of evaluations of
the integrand at prescribed equally-spaced points. What about optimising the points at which

the integrand is evaluated 7

76

Example: Consider the approximation

/_11 fz)dx = c1 f(z1).

Q: Can we choose ¢; and z; to ensure that the approximation is exact for any linear polynomial
7

A: Let f(z) = ap + ayx, then the LHS is 2a¢ and the RHS is ¢ja¢ + c1a12;. If we want LHS =
RHS for arbitrary ag and a; then we must set ¢; = 2 and x; = 0. le.

1
| 1@z~
-1
is exact for all linear polynomials f(x).
Exercise: Consider the approximation

/ @) de (@) +cof ().

We have 4 parameters cq, ¢, 1 and z9 to choose. Show that these can be defined to exactly
integrate all cubic polynomials: f(x) = ag + a;z + asx? + azx®, with a; arbitrary.

6.7.2 The main result

Theorem: Let {¢;,i =0,...,n} be a set of orthogonal polynomials with respect to the weight
function w(x) on an interval (a,b) (¢;(z) is of degree 7). Then the integration formula

(40) / w(z) f(x)de = Y w;f(xy),

where
(41) wj:/ w(x)H%dx

and z;, 1 = 1,...,n are the n zeros of ¢,(z), is exact if f(z) is a polynomial of degree (2n — 1)
or less.

Note: If n =1 then wy; = fabw(x) dz.

Proof: Start by assuming that f(x) is a polynomial of degree (2n — 1) or less. Then we can
write

(42) f(@) = q(@)fn() +7(2)

where ¢(z) and r(x) are both polynomials of degree (n—1) or less. The coefficients of the powers
of "7 ... 2% in q(x) are chosen such that the coefficients of the powers of z**~1 ... z™ in the
product ¢(z)¢,(x) match the coefficients of the same powers of f(z) and then the coefficients of

the powers of "1, ... 2% in r(z) sort out the remaining powers of "1, ... 2% of f(z).

It follows that

/abw(x)f(x) dz = /abw(x)q(m)gbn(m) dw + /abw(a:)r(a:) de.

The first integral on the right-hand side vanishes by Property 2 of orthogonal polynomials.

Since r(z) is a polynomial of degree n— 1 we can exactly represent it by an interpolating Lagrange
polynomial of degree n — 1 that passes through the points z1, ..., z, (noting that we’ve shifted
indices from 0 to 1 from earlier). Ie.

)=o) [T =2
=oE
and so , . , . .
/a w(x)r(x)de = Z'r(x])/ w(r) H ((xx _‘Z)) dz = ij r(x;)
e g S

using (41). But, from (42),
r(z;) = f(x;) = q(x;)on(x;) = f(z;)
since x; are the zeros of ¢,, and the result follows.

78

6.7.3 Gauss-Legendre quadrature
This refers to Gaussian quadrature on the interval (—1,1) with w(z) = 1. We have already
established that Legendre polynomials apply in this case.

For each n we develop a new approximation capable of exactly integrating polynomials of degree
(2n — 1) or less (and thus increasing accuracy with increasing n when an approximation for f(z)
not a polynomial).

For each n first calculate the n zeros z;, j = 1,...,n of ¢, () = P,(x) and then calculate the
weights w; using (41).

For the first few Legendre polynomials we find:

n | Legendre polynomial: P,(z) roots: ; weights: w;

1 P(x)=x 1 =0 w; = 2

2 PQ(.:C):%SEQ_% xlz—l/\/g,.%Q:l/\/g ’(Ul:l,’LUQzl

3 Py(z) = 222 — 32 r1=—1/3/5, 9 =0, x3 = /3/5 | wy = w3 =5/9, wy = 8§/9

E.g.: The two-point Gauss-Legendre quadrature scheme is

/_ @) de = f-1VE)+ £V

and is exact for any cubic polynomial f(x). This answers the Exercise earlier.

6.7.4 Integrals defined on general intervals

The value of integrals defined over a general interval, (a, b), can be found by mapping (a,b) onto
(—1,1) with, for e.g., the simple linear transformation ¢t = (2x —a —) /(b — a).

3/2
Example: Approximate the value of I = / e du. using Gauss-Legendre quadrature.
1

First map (1,2) to (—1,1) with ¢ = 2(2z — 2) or & = (¢ +5)/4. Then

I=; /_1 exp(—(t +5)°/16) dt.

1

79

Using table above, with n = 1, I ~ (2/4) exp(—25/16) = 0.104805
With n =2, I ~ (1/4) exp(—(5 — 1/4/3)?/16) + (1/4) exp(—(5 + 1/+/3)?/16) = 0.109400.
The exact value is 0.109364 to 6 d.p. accuracy.

Remark: One of the problems of Gauss-Legendre is determining the zeros of polynomials for
larger n. It would be nice if the orthogonal polynomials had explicit zeros...

6.7.5 Gauss-Chebyshev quadrature

Consider Gauss quadrature with @ = —1, b = 1 and the weight function w(z) = (1 — 22)71/2.
The standard notation is that ¢;(z) = T;(x) and are known as Chebychev polynomials of
the first kind. The standardisation condition 7,,(1) = 1 applies.

Let’s use the manual approach. It will help to establish the value of some integrals before we
start:

. 13
43 — _dx = —— _dx =0
(43) /_1\/1—372 /—1\/1—332

since the integrands are odd functions; also, using the substitution x = cos#, we have

1
172

1 1 T T
44 ——dx = dd =7n and ———dz = cos?0dl = /2
@[= [== 4
e First Ty(x) = 1 is polynomial of degree 0 s.t. Tp(1) = 1.
e Next Ti(x) = Ajx + By is polynomial of degree 1 and we need
<T1,T0> = 0 = A1<.’E, 1> + Bl<1; 1)

The first inner product is zero by (43) and the second is 7 by (44). Hence By = 0 and
A; =1 is needed to satisfy T7(1) = 1. Thus T} = x.

o Next let Th(z) = Agx? + Byx + Cy. We need

(Ty, Tp) = 0 = Ag(x* 1) + Bo(z, 1) + Cy(1,1)

80

and so 0 = Ay(7/2) + Com or Cy = —%Ag. We also need
(Ty, Tp) = 0 = Ag(a?,2) + By(x,z) + Co(1,x) = By(7/2)

Thus Ts(z) = Az(2? — 1) and T5(1) = 1 means Ay = 2 so that Ty(z) = 227 — 1.
Exercise: Show that the (n = 2) two-point Gaussian-Chebyshev quadrature rule is

Lf(x) o T
/_ e AUV + SOV

such that the approximation will be exact for polynomials f(z) up to and including cubics.

Proposition: The Chebyshev polynomials are given by T}, (x) = cos(n cos™! z).

Proof: We first check the standardisation condition
T, (1) = cos(ncos ' 1) = cos(0) = 1.

Next we show (by induction) that 7T, (z) are are indeed polynomials of degree n. The first two
functions are
To(z) = cos(0) =1, Ti(z) = cos(cos ' 1) =z,

polynomials of degree 0 and 1, respectively. Now consider

Tni1(x) + T,1(x) = cos((n+1)cos ' z) + cos((n — 1) cos™')

= 2cos(ncos ' x)cos(cos ') = 22T, (z).
Thus, we have obtained the following recursion relation
Thi1(z) = 22T, () — Thma (), n>1.

This can be used to show that if T},(z) is a polynomial of degree n (for n > 1), T, (z) will be
a polynomial of degree n + 1. Since it is true for n = 0, 1 it is true for all n.

81

Finally, we show that T, (x) are indeed orthogonal on the interval (—1, 1) with respect to w(z) =
(1 — 22)~"/2, In the following we make use again of the substitution = cos, dz = — sin §dé:

1

I 7) de = /OTr cos(nf) cos(m@) df = 5 /07r cos((n +m)f) + cos((n —m)d) do

provided n # m

(n+m) (n—m) 0

_ % {sin((n +m)f) | sin((n — m)@)} .
0.

Remark: Gauss-Chebyshev quadrature is particularly simple since the zeros x; and weights w;
are explicitly known. The zeros follow from

0 =T,(z) = cos(n cos ' z) = ncos 'r=jr——, j=1,...,n.

Hence the zeros are defined by

27 —1
xj:cos<u), j=1,...,n.

2n
We state (without proof) that the weights are w; = 7/n, j = 1,...,n (see homework for

n=1,23)

6.7.6 Other important orthogonal polynomials

The following two polynomials are defined on infinite intervals and can be useful for approximat-
ing integrals on (0, 00) and (—o0, 00):

(i) Laguerre polynomials L,(x): Defined on the interval (0,00) with w(z) = e™*. Stan-
dardisation: coefficient of 2™ in L, (z) is (—1)"/n!.

(i) Hermite polynomials H,(z): Defined on the interval (—oo,00) with weight function
w(z) = e **. Standardisation: coefficient of 2" in H,(z) is 2".

82

7 Ordinary differential equations: initial value problems
(IVPs)

7.1 Introduction

Differential equations play a central role in many scientific fields including mathematics, physics,
biology, chemistry, engineering as well as finance. In spite of what you are taught, most differen-
tial equations cannot be solved in closed form. The numerical solution of differential equations
is particularly useful for PDEs (e.g. computational fluid dynamics models). Here, we will deal
only with ODEs.

Numerical methods date back to Euler in the mid-18th century. The primary motivation then
was in approximating the solutions to Newton’s differential equations describing the motion of
planets and comets.

7.1.1 First-order ODEs

We consider the initial-value problem (IVP) consisting of the general 1st order ODE for
y =y(b):
d
(45) Y —fty), a<t<b
dt
subject to the initial condition

(46) y(a) = a.

Here, «, a, b are given constants and f is a given function of the independent variable, ¢, and the
dependent variable, y: t is used to indicate time (although not all IVPs relate to time-varying
problems).

7.1.2 Higher-order ODEs and their reduction to a system of first-order ODEs

Q: What about ODEs which are of higher order ? For e.g. y"(t) = —g (the motion of a projectile
under gravity) subject to y(0) = h, 4/(0) = u. These are important too, surely ?

83

A: Sure. So let’s consider n-th order ODE written in its most general form:
(47) y () = flty,y oy ™), a<t<b
with initial conditions (since this is an initial-value problem)

(48) y@)=a1, Y@)=ay, ... y" V() =a,

(say) where «;’s are all given as is f.

Now let u; (t) = y(t), us(t) = 3/(t) and so on up to u,(t) = y™ 1 (¢). Then we see that
ur(t) = ua(t), up(t) =ust), ... u,(f) = un(D)

plus

from (47). Also from (48)
ui(a) = ar, us(a) = o, . up(a) = ay.

We can organise these relations into a first-order system of ODEs:

— -/ — -

U U2
Usg Uus
Up—1 Up,

U | | f(tun,ug, e up) |
and writing u(t) = (uy(t), uz(t), ..., u,(t))? means the above is
(49) u' = f(t,u)
where f = (ug, us, ..., f)T and with u(a) = o = (a1, ..., a,)7.

Remark: (49) is just a vector version of the first-order scalar ODE (45) and everything developed
for first-order equations can be extended naturally to the higher-order system (see later).

84

7.2 FEuler’s method

Euler’s method is the simplest numerical approximation method.

Consider again the initial-value problem (IVP)

d
(50) d—i = f(ty), a<t<b, withy(a)=oa.

We first divide the interval [a,b] into N equal subintervals. The solution is approximated at
discrete times t; = a +ih, i = 0,..., N, called mesh points where h = (b — a)/N is the step
size.

Euler’s method can be derived from Taylor expanding:

(51 ltian) = olt +) = (8 + hy'(0) + (6

for some & € (t;,t; + h). Assuming h is small justifies ignoring the h? term and we let the
approximation, y;, to y(t;) that follows from this satisfy

Yisr = Yi + hf(ti, vi)

after using (50) to replace ¥’ by f. This iterative scheme is called Euler’s method. It is
an example of a first-order difference equation and is used for i = 0,1,..., N — 1, whereby
Y1, Y2, .. Up to yy, the approximation to y(b), is obtained. It requires yo = « to start the
iteration.

Remark 1: Euler’s method can also be derived by replacing the derivative in (50) by the forward
difference approximation

y'(t) = f(t:, y(t)), and y/(t) ~ y(ti + h;)L - y(ti)'

Remark 2: Another basis for developing numerical ODE methods is to start with the (second)
Fundamental Theorem of Calculus

/) dt = it + h) — gt

85

from which
tit1

Yir1 = Yi + f(ty(t))dt

t;
follows immediately and is exact. Numerical integration of the ODE is now reduced to how to
approximate integrals. The most basic method is the ‘rectangle rule’ in which the integral above
is approximated by (t;41 — t;)f(t;,y(t;)) (base times height) and this implies Euler’s method
again. But immediately better is the trapezoidal rule and this already hints at a plethora of
methods for numerical integration of ODEs.

7.2.1 Example

Consider the IVP
y=—y+t, 0<t<l, withy(0)=1

Exact solution: We can find the exact solution using integrating factors and it gives

y(t) =2 "+t — 1.

Numerical experiment: In the plots below we show the output of computer code implementing
the Euler method against the exact solution for step sizes h = 0.1, 0.05 and 0.025.

1 1 1

0.95] 1 osesl 1 oes)
0ol N I T 1 o9l
0.85} N { oss} kY | osst
08l . 1 osl . 1 osl
0.75| - 1 ozsl S 1 ozsl
0.7} .] 07} e, A 07}
065 02 07 06 08 065 02 07 06 08 065 02 07 06 8

We observe that the error at t = 1 appears to half when h is halved. This suggests that the error
is proportional to h.

Q: Can we confirm this error ?

A: Yes, but first we have to distinguish between different types of error.

86

7.3 Local truncation error

Defn: The local truncation error is the error introduced at each step assuming that the
solution at the beginning of each step is exact. In going from step i to ¢ + 1, we denote this error
by 71
Tiv1 = Y(tiv1) — i1
exact GE):O/LL’

“Approx” means the numerical approximation to y;,1 assuming y; = y(t;), the exact solution.

Example: For Euler’s method it is
Tipn = y(ti+h) = [y(t:) + hf (i, y(t:))]
2

(52 =yl + by () +) — k) + by)] = e

after using (51) and (50). Thus, the local truncation error for the Euler method is O(h?).

Remark: There are different definitions of the local truncation error and they can differ by a
factor h from our definition (e.g. Burden and Faires).

7.4 Global error

In Euler’s method the local truncation error of O(h?) isn’t O(h) as suggested by our numerical
observations. Why 7 Well, there we were observing the cumulative error after many steps. This
gives rise to the notion of ...

Defn: The global error is the error at a fixed time; for example at the final time ty = b. It
is generally difficult to determine the global error precisely, because it depends on how errors
accumulate and propagate during the iteration process. Indeed, this is a point we return to in a
few pages. However, for now let us be satisfied with the following rough estimate:

Since the number of steps is N = (b — a)/h = O(1/h), and the error made for a single step
Tip1 = O(hPTL), for some p, say, then the error at ¢y is estimated to be O(1/h) x O(hP™t) = O(hP).
To make this estimate, we have assumed that the errors accumulate linearly.

87

Defn: The order of accuracy of a method is defined to be p where the global error is O(h?).

E.g.: For Euler’s method since 7,11 = O(h?) we assert that the global error is O(h) so p = 1 and
Euler’s method is therefore a first-order method.

7.5 Solutions of linear difference equations

Sometimes one can solve the first-order difference equation defining Euler’s method by hand
(linearity is essential). This is useful as it allows us to compare y; with the exact solution y(t;).

7.5.1 Example

Solve the difference equation from Euler’'s method applied to the ODE from Example 7.2.1:
y = —y+t, 0<t<l, with y(0) = 1.
Euler’s scheme for this IVP is
Yir1 = Yi + h(—yi +), 1=0,...,N -1,
with yo = 1 and h = 1/N, t; = ih. This therefore reads as
Yir1 — (1 — h)y; = ih2.

This is an inhomogeneous difference equation since there is a RHS term not related to ;.

One can solve this similar to how one would solve an linear inhomogeneous ODE in A-level/1st
year Calculus. That is, we start by writing

yi=yr+yf

where y!, y¥ are solutions of the homogeneous problem and a particular solution (respectively).
That is, we let y? satisfy the homogeneous problem

yzh—l-l - (1 - h)yzh =0

88

and we look for y* = Az® where A and z are constants'®, It follows that z = (1 — h) and so
yl = A(1 — h)’. Next we seck a particular solution 3 to

y?—&-l - (1 - h)yf = ih®.

Noting that ¢ plays the part of = in continuous differential equations, we interpret the RHS term
as being like a function proportional to z. Since we would look for particular solutions of the
form y(z) = Bx 4 C' in such an instance, it makes sense here to look for a solution y? = iB + C.
Then it follows

(i+1)B+C—(1—-h)(iB+C)=ih?

and, since this equation holds for varying i, we equate coefficients of 7 to get B — (1 — h)B = h?
and the constants to get B+ C' — (1 — h)C' = 0. This gives B=h and C' = —1 and 3/ = ih — 1.
Thus, the general solution is

y = A(1—h)' +ih — 1.

Finally, when ¢ = 0 we have yy = 1 and this determines A = 2. In this way we have found the

exact solution .
yi=2(1—h)"+ih—1

to the difference equation resulting from Euler’s method. That is, these are the values given
explicitly for any given i that are computed from the iterative scheme.

7.5.2 Analysis of error for example above

Since this is explicit and we already have the exact solution y(t) = 2e™* 4+ ¢ — 1 we can compute
the error for this example exactly, defined as

E(t:) =y(t) —yi=2¢"" +1; — 1= (2(1 = h)" +ih — 1).

Note, this is not the local truncation error, since it includes the accumulation of error. Nor is it
the global error since ¢; is not a fixed time (yet).

Now t; = th and so

(53) E(t;) = 27" —2(1 — h)".

Y¢his is like using the ansatz y(x) = Ae™ for the Complementary Function when solving ODEs

89

Let us Taylor expand both terms to get
Et;) =2(1 —ih +i*h*/2+...) = 2(1 —ih+i(i — 1)h*/2 +...) = ih*.

This increases with i and is O(h?), the same as the local truncation error. But note that we
have assumed ¢h is small in throwing away higher order terms in the expansions above. If ih is
small, this means it is only valid for small times At the final time when i = N = 1/h, ih = 1 is
certainly not small.

This means the analysis above cannot be used to determine the global error.
Instead for E(ty) we use th = N and N = 1/h directly in (53) to give
E(ty) =27 —2(1 — n)V/"

which is now the global error since ¢ty = 1 is fixed. This expression is the basis for a different
asymptotic calculation. And we expand

(1 —h)Y" = exp{(1/h)In(1 — h)} = exp{(1/h)(=h — h?/2 —=h*/3 — ...} =exp{—1—h/2+ ...}
=e '(1-h/2—..)).

Using this in the above gives
E(ty) =2¢ ' —2e Y1 —h/2) + O(h?) = e 'h.

This confirms the global error in the example is O(h).

7.6 Euler’s method for higher-order ODEs.

We'll consider second order ODEs, but it is straightforward to generalise the discussion to higher-
order ODEs (as suggested in Section 7.1.2). Consider

' = f(t,y,y), a<t<b, with y(a) = a, ¥/(a) = B.

This IVP can be transformed into a system of first-order ODEs by, say, setting v(t) = v/(t) so
that

y =v, y(a) = o,
v = f(t,y,v), v(a) = .

Euler’s method can be applied to each of these lines by letting v; and y; denote the approximations
for v(t;) and y(t;), respectively. This results in

Yit1 = Yi + hvi, Yo = q,
Vig1 = v + hf(ti, vis vi), vy = .
This is a system of first-order difference equations which can be solved by iteration.

Alternatively, we can rearrange the first line to

vy = (ym - Z/i)/h

and substitute into the second line which leads to a second-order difference equation in the
discrete variable y;:

Yi+2 — Yi+1 Yi+1 — Yi Yi+1 — Yi Y1 — Yo
- h tia 79 P = O, =
n 3 +hf (Yy 3) Yo =« 3 B
which reduces to
Yivor = 2Yip1 — Yi + h2f (tia Yis —yiHh_ yi)) Yo = Q. y1 = a+ hpB.

Remark 1: We have asserted (with some supporting evidence, athough there are theorems
which really nail this down) that Euler’s method is first-order accurate implying that its global
error is O(h).

Remark 2: O(h) is not accurate enough for anything beyond the most basic applications. The
focus from now will be in developing more sophisticated methods which improve the approxima-
tion by reducing the local truncation error.

7.7 Higher-order Taylor methods
One (obvious) way to improve the approximation is to include more terms in the Taylor expansion
that gave rise to Euler’s method. L.e.

h? h3

y(ts +h) = y(t) + hy' () + 5y (8) + 5y () + ..

91

7.7.1 Example: Taylor method of order 2

Let us include one extra term than for Euler’s method.

We use the ODE to replace v/(t) = f(t,y), but we also need an expression for the unknown
second derivative y”(t) (if we don’t know y(t), we can’t say what y” () is).

It is obtained by differentiating v/(t) = f(t,y) with respect to ¢, noting that f is a multi-variable
function and t appears twice. That is

win d B dtof dyof B
y'(t) = &f(t,y(t)) = vt Aoy e+ fyf

using the chain rule. We are given f so, in principle at least, we know its partial derivatives f;
and f,.
We therefore obtain the following iteration scheme

2

(54) Yir1 = Yi + hf(ti, vi) + % Lfe(ti, vi) + fy(tis yi) f(tis vi)] Yo = Q.

where y; is an approximation for y(¢;). Since we neglected terms of O(h?) in the derivation of
this scheme its local truncation error is O(h?®). (54) is called the Taylor method of order 2
and is an example of a higher-order Taylor method.

7.7.2 Taylor method of even higher order ?

For further improvement one needs to include the next term in the Taylor expansion h3y” (t;)/6
where

ym(t) = %y//(t) = %[ft + fyf] = fu+ ftyf + ftyf + fyyf2 + fyft + fyfyf

(copious use of the chain rule again).

Remark: If it wasn’t obvious before, it is now: higher-order Taylor methods have the advantage
of higher order local truncation errors, but they require the evaluation of higher-order partial
derivatives of the function f(t,y). This can be complicated and time-consuming.

92

7.8 Runge-Kutta methods

Runge-Kutta methods aim to reduce the local truncation errors but by only using evaluations of
f(t,y) (and not its derivatives).

IDEA: To introduce the idea of the Runge-Kutta method we consider an iteration scheme of
the form

(55) Yir1 =y +af(ti + b,y; + ¢)
Note : If a = h and b = ¢ = 0 this agrees with Euler’s method.

Q: Can we choose a, b, ¢ “optimally” to reduce the truncation error ?

A: Yes, and we do so by matching this scheme to from Taylor’s second order.

Let us apply a Taylor expansion in the two arguments of the function f(¢,y) in (55):

a
(56) Yir1 =i +af(ti,ys) + afe(ts,)b+ afy(ti, yi)c + 5 [fttbz + 2 fiybc + fyycﬂ + ...

Comparing (56) with equation (54) shows that we should choose

h? h? h h
(Z—h, ab—?? ac—?f(tiayi)a - (I—h, b_§7 C_§f(tzayz)

Since a, b and c are all of order h it follows that the next term in the Taylor expansion in (54)
are all O(h?).

Hence the Runge-Kutta iteration scheme has the following form

h hk

— Lyt _> where k= f(ti,vy:)

. — 9. h t:
(57> Yit1 yz+ f (% + 2 2

Note that t; + h/2 is in the middle between ¢; and t;1, and y; + hf(t;,y;)/2 is in the middle
between 7; and ;41 in Euler’s method. For this reason it is also called the midpoint method?.

20we might also imagine that this scheme might emerge from the Fundamental Theorem of Calculus starting

point outlined earlier in which the integral is approximated by the Trapezoidal rule — a midpoint rule — rather
than a rectangle rule

93

It is classified as a Runge-Kutta method of order 2 (or RK2) because its local truncation
error is O(h?®) and hence we expect a global error of O(h?).

Remark: Its application requires two functional evaluations per time step, k& = f(¢;,y;) and

[t +h/2,y; + hk/2).

Numerical experiment: The following table shows how RK2 compares to the Euler method
when applied to our previous example 3y’ = —y + ¢ with y(0) = 1. In both cases the step size is
h = 0.1. The second-order method is clearly more accurate.

y(t)

t Euler RK2 exact
0.2 || 0.82000 | 0.838050 | 0.83746
0.4 || 0.71220 | 0.741604 | 0.74064
0.6 || 0.66288 | 0.698807 | 0.69762
0.8 || 0.66093 | 0.699950 | 0.69866
1.0 || 0.69736 | 0.737082 | 0.73575

7.8.1 A family of RK2 methods

There are other Runge-Kutta methods of order 2. They can be obtained by starting from
Yir1 = yi taf(ti,y:) +0f(ti + ¢,y + d),

and by placing one condition on the four a, b, ¢, and d, before requiring use the order 2 Taylor
method as before to place three further conditions. In this way one obtains a one-parameter
family of Runge-Kutta methods of order 2.

7.8.2 Higher-order Runge-Kutta methods

If we allow more functional evaluations per time step then we can achieve higher order accuracy.

94

Of particular note, and very popular, is the fourth-order Runge-Kutta method known as
RKA4. It requires four functional evaluations per step. The derivation is somewhat involved and
we cite the result here for interest only. The functional evaluations required are

ki = f (i, ys)
h hkq
ko = t. — a5 -
2 f(z+2ayz+ 2)
h hks
k3_f(ti+§;yi+7)

ky = f(ti + h,y; + hks)

and the iteration scheme has the form

h
Yi+1 = Yi + g[lﬁ + 2ky + 2ks + ka.

7.9 Multistep methods
7.9.1 Introduction

The methods that we have considered so far are called one-step methods and can be written
in the general form

Yir1 = Yi + h (ti, yi, h)
where ® is more and more complicated for higher-order methods.

They use the approximation y; from the previous mesh point ¢; to evaluate y;,;. After the
calculation of ;.1 this information is discarded, and the next iteration uses information from
the following mesh point.

Multistep methods employ a different philosophy. They use a number of previous approximations
Yis Yi—1, Yi—2, - - - and previous mesh points t;,t;,_1,¢;_o,... to arrive at an estimate of the solution
at t/iJrl .

This is clearly efficient because one can reuse functional evaluations from previous steps without
needing new calculations.

95

Defn: A linear k-step multistep method uses approximations from the previous k steps and
can be written in its most general form as

k k
(58) Yir1 = Z @ Yir1—j + h Z Bj f(tiv1—j, Yir1-5)
j=1 J=0

or perhaps more clearly as
Yiv1r = ¥+ Qyi—1 + ...+ QpYip1-k
(59) +hBof (tivr, yir1) + hBLf (s, yi) + o+ BB f (tiva—ks Yir1—1)-

Defn: If 5y # 0 then y;,; appears on both sides of the equation and (59) is then an implicit
equation for y;;1 and the method is called implicit. If fy = 0 then the method is said to be
explicit.

Remark: The reason for including implicit equations is that they are often more accurate than
explicit methods as we will see later.

Example: Multistep formulas arise naturally by applying various approximation formulas for
derivatives in Section 5 on Differentiation.

We have already explained that approximating the derivative in the ODE

y'(t:) = f(ti,y(ti)
by the forward difference formula y/(¢;) =~ [y(t;+1) — y(t;)]/h gives Euler’s method. But using the
more accurate central difference approximation y'(¢;) ~ [y(t;11) — y(t;—1)]/2h instead gives

(60) Yit1 = Vi1 + 2hf(ti, i)

which is an example of an explicit two-step method.

Remark: The fact that a multistep method requires the solution at £ mesh points to determine
the solution at the next mesh point raises a new difficulty: how do we start the iteration ? Recall
that the initial condition tells us only .

The solution is often to use one-step methods of the required order of accuracy (such as Runge-
Kutta) to approximate the solution at the first & mesh points, 4o, y1, - . . yx—1 and use the multistep
method thereafter.

96

7.9.2 Examples of multistep methods

The most popular k-step multistep formulas are (adopting the shorthand notation f; = f(¢;,y;))
listed below.

1. Adams-Bashforth (ABk):
Yir1 = Yi + WP fi+hBafia + .o+ WPk fir1—k-
(g =1, a; =0for j=2,...,k and By = 0, explicit)
2. Adams-Moulton (AMkE):
Yitr1 = Yi + hbofiv1 + WO fi+ ..+ hBe fivi—k.
(g =1 and oj =0 for j =2,..., k, implicit).
3. Backward Differentiation formulas (BDk):
Yit1 = 1Y + yi-1 + ..+ Yis1-k + hPo fi

(Bj =0for j =1,...,k, implicit).

Q: Many coefficients are set to zero (we will say why this is so later), but how do we choose the
values of the remaining coefficients 7

A: Simples: we minimise the local truncation error, 7;,1.

7.9.3 Example: Derivation of AB2

From Section 7.9.2 with k = 2, AB2 is given by

Yir1 = Yi +hpfi + hBafioa.

Recall the definition of the local truncation error being the difference between the exact solution
at ;11 and the numerical approximation at ¢;,; assuming the solution at t; was exact.

97

Hence we obtain the local truncation error from

Tipw = y(ti +h) = [y(t:) + hpry'(t:) + hBy' (t; — h)]

h? h3
= vt + e+ e + e +

2

wW—WMMJ%PM—W%HE

.

after using ¢y’ = f and Taylor expanding everything around ¢;. Collecting terms proportional to
each power of h gives

T = hy' () [1 = B1 — Ba] + B2y (1) B + 52} + Ry (t;) E - %} T

Our aim is to eliminate as many terms possible and, since we have two parameters 5, and By we
can take out terms proportional to i and h? by choosing

1
1 -3 —pB=0, and §+52=0

which gives f; = 2 and 8, = —1 and we note that h* term is non-vanishing since $8, — & = — 1.

Hence, the AB2 scheme is given by

h
Yiv1 = Yi + 5(3fi — fiz1)-

Since the coefficient of 3 does not vanish we conclude that 7,41 = O(h?®). The order of accuracy
is therefore 2 (p = 2).

Remark 1: ABI1 is a one-step method and is easily seen to be Euler’s method. One can show
that ABFE is kth-order accurate.

Remark 2: AMEk can be shown to be (k + 1)-th order accurate and this is because AMk has
an additional free parameter 5y which can be tuned to eliminate one more order of truncation
error.

Exercises: Follow the methods in the example above to show that:

98

(i) BD1 is given by
Yir1 = Yi + hfiva;
(ii)) AM2 is given by
h
Yigr = Yi + E(5fi+1 +8fi — fiz1).

7.9.4 Numerical experiment

Consider

y'(t) = y(t), y(0) =1
which has the exact solution y(¢) = e'. Three numerical methods are used to compute solutions:
(i) Euler’s method; (ii) (60) based on a central-difference (CD) approximation; (iii) AB4 ... which
is given by

0<t <2,

h
Yir1r = Yi + ﬂ(55fi —59fi1 +37fia — 9fi3)!
The table below shows the (global) errors E(ty) at the end point ¢y = 2 as a function of h. We
see that errors reduce by different factors upon the halving of h, indicating the orders of accuracy
of the schemes.

E(ty)
Scheme || h=0.2 | h=0.1 | h = 0.05 | ratio of last two
Euler 1.20 0.662 0.349 1.9~2
CD 0.0906 | 0.0238 | 0.00607 3.92~4
AB4 0.0042 | 0.00038 | 0.00003 13.6 ~ 16

7.9.5 Stability

Q: In a general k-step multistep method (59) one has (2k+1) coefficients a, . . ., oy and Sy, . . . By
If none are set to zero, then it ought to be possible in the expansion of the local truncation error
to eliminate all terms proportional to v, 1/, ...,y** . In this way one could orchestrate it such
that 7., = O(h**1) and p = 2k. So why not do this ?

99

A: It turns out that the resulting formulas are numerically unstable as we shall now see...

One must distinguish between two different definitions of stability:

Defn: If, for a fixed 7" > 0, the numerical approximation to y(7") remains bounded as h — 0
then we say that the numerical method is stable or zero stable.

Defn: If, for a fixed h > 0, the numerical approximation to y(7") remains bounded as T' — oo
then we say that the numerical method is time-stable or A-stable or absolutely stable.

7.10 Stability (or zero-stability)

Let us consider the first of these which is best described by an example.

7.10.1 Example

Consider the following IVP

dy _

it 0<t<l, with y(0) = 1.

Exact solution: Easy to show y(¢t) = e’ and y(1) = e ~ 2.71828.

Numerical experiment: Let’s apply two different 2-step multistep methods to the problem
above:

(i) AB2: yi1 =y + %h(?’fi — fi-1)
(ii) SB2: yiy1 = —4y; +5yi—1 + h(4fi +2fi—1)

AB2 has order of accuracy 2, and SB2 is a scheme (SB = Special Brew) that I've invented but
which I've designed to have order of accuracy 3.

Because these are two-step methods we need y; as well as yp = 1 and we’ve used the exact value
y1 = y(h) = e" to avoid bias. We see that AB2 tends to the correct value as h — 0, but SB2

100

h 0.2 0.1 0.05 0.025
AB2 || 2.68771 | 2.70881 2.71568 2.71760
SB2 || 2.73433 | -0.12720 | —1.62 x 10% | —9.34 x 10'8

becomes increasingly unbounded in the same limit (even though the local truncation error is
O(h")).
Q: What happened 7

A: The order of accuracy is based on the argument that the global error is O(1/h) x O(hP*1) =
O(h?) for a local truncation error of O(hP*!). That is, it assumes the error accumulates linearly.

But the local truncation error can “feed off itself” and accumulate errors exponentially and this
is the signature of numerical instability.

7.10.2 Analysing stability

In order to investigate stability we consider the limit h — 0.

In the h — 0 limit the «; terms in the multistep formula (59) remain important but the hpS;
terms can be neglected. This step simplifies the numerical scheme enough to allow us to analyse
the global error.

Example: Consider scheme SB2 above under limit h — 0. We obtain

Yir1 = —4y; + dyi—1

or
Yiy1 + 4y — dyi—1 = 0.

This is a homogeneous second-order difference equation with constant coefficients. We can
solve it using methods we outlined earlier in the Chapter:

We let y; = Az' and, upon substitution, get

Azt 44420 — 54271 = 0.

101

Dividing through by Az*~! (we are not interested in the trivial solution, z = 0) gives
0=z2"+42-5 = 0=(z+5(z-1 = z=-5orz=1

Thus the general solution is given by the linear superposition of both solutions y = Az with
z=1and z = -5 as ' ' o
y; = A(=5)'+ B1' = A(—1)'5' + B.
Now 1o = 1 implies A+ B =1 and y; = " = 1 + h + O(h?). Neglecting O(h?) terms and using
i=1gives 1 + h = A(—5) + B. Solving gives
A= —h/6, B=1+h/6.

Thus our exact numerical solution is
h - h
i =—=(—1)'5"+ 1+ —.
y (1B 1o
We can see that the first term on the RHS grows exponentially as i increases. Indeed, at
i =N = 1/h, we have
h

h h h
M Wst/h oyt e \We/mme) g T
6()oY+ 1+ G 6()e + 1+ 6

and the global error, £(1) = y(1) — yx is unbounded as h — 0 and N — oc.

Yn = —

Defn: The component of the solution A(—>5)* is known as a parasitic solution. It is introduced
by the discretisation rather than by the ODE itself. If such a mode exists, it will always be
excited by errors in the calculation such as round-off errors (as discussed in Chapter 1) or a
small inaccuracy in the initial data. That is, the numerical instability is not a function of the
particular ODE or initial condition in this problem, it is a property of the scheme.

Exercise: Show that the AB2 scheme is stable.

7.10.3 The root condition for stability

Let us now apply the same analysis to the general k-step multistep method (59). Consider
k k
Yir = i+ h Y Bifiy where f= f(ti,y).
j=1 §=0

102

Taking the h — 0 limit reduces this to

(61) Yit1 — Q1Y — Q2Yi-1 — ... — Yiy1—k = 0
which is a homogeneous linear difference equation with constant coefficients. We look for solutions
of the form y; = A2* and thus obtain

2T gt — g — TR =0

i+1-k

since we are not interested in the trivial solution z = 0, dividing by 2 results in

k k—2

P — gt - — a2 — = 0.

This is called the characteristic polynomial and is of degree k. There are k roots of this
polynomial which we label z; € C, j = 1,2,..., k. There are two possibilities:

(i) The roots are distinct and then the general solution of (61) is
yi = A1zt + Apzl + .+ Arzp.
(i) If any of the roots are repeated, e.g. if 23 = 2, then Az} is replaced with Agizi. This is

just like repeated roots to the characteristic equation for 2nd order ODEs where you form
a new linearly-independent second solution by multiplying by .

Given the preceding definitions we can state the following theorem:

Theorem (root condition): A linear multistep formula is stable if and only if all roots z; of
its characteristic polynomial satisfy |z;| < 1, and any root with |z;| = 1 has multiplicity one.

7.10.4 Global error, consistency and convergence

If the method is stable then one can specify the order of the global error of the method.

Theorem (Dahlquist): If a linear multistep formula has local truncation error O(h?™!) and is
stable, then the global error is O(h?). If p > 0, the method will converge to the exact solution
as h — 0 and is called convergent with order of accuracy p.

103

Defn: A linear multistep method is said to be consistent if the local truncation error goes to
zero faster than h: limy, o 7;11/h = 0. That is, p > 0.

Defn: From the definition of consistent it follows also that a method is convergent if it is
both consistent and stable.

Example 1: Investigate stability and convergence of the following method

1 1
i1 = SYi T 5Yi-1+ 2hf;
Yier = 5Yi + 5¥i-1 t f

Consider the h — 0 limit: . |

i1 — =Y — =Yi—1 =0
Yit1 2?/ 29 1

Setting v; = Az’ leads to the characteristic polynomial
1 1 1
0222—52—52(2—1) <Z+§>

Both roots satisfy |z| < 1, and the root with |z| = 1 is simple. It follows from the root condition
that the method is stable. Let us now investigate the order of accuracy. The local truncation
error is

R = 0t R) = |G = Jults -~) - 20/
= yly) +hy'(t) +... — %y(tz) - % ly(t:) — hy'(t:) +...] = 2hy'(t:)
= _%hy,(ti) +

The local truncation error is O(h), so the order of accuracy is p = 0. The method is not consistent
and also not convergent.

Example 2: Investigate stability and convergence of the following multistep method
4
Yit1 = Yi-3 + §h (fi + fisr + fic2)

104

Here the number of steps is £ = 4. The characteristic polynomial is
A —-1=0 — z=1, z=-1, z=14, z=—1

All roots satisfy |z| = 1 and are simple. Hence the method is stable.

Additionally (exercise) one can show that the local truncation error is O(h*). Consequently, the
order of accuracy p = 2 and therefore the method is convergent.

7.10.5 A comment on ABL and AMFE methods
The Adams-Bashforth (5y = 0) and Adams-Moulton (S, # 0) formulae are given by

Yir1 = Yi + hBofix1 +hBifi + ...+ hBifivi—k

The characteristic polynomial in all cases is z — 1 = 0, and from the root condition it follows
that the methods are all stable.

As mentioned before, one can show that the order of accuracy of ABk is p = k, and the order of
accuracy of AMk is p =k + 1. Hence the methods are convergent (since k& > 1).

7.10.6 Maximal order of accuracy

The maximal order of accuracy that can be achieved is determined by the following theorem:

Theorem (first Dahlquist stability barrier): A stable k-step multistep formula can have
order of accuracy at most:

o k: if explicit.
e k+ 1: if implicit and k is odd.

e k4 2: if implicit and k is even.

(No proof)

105

Remark: It is for this reason many of the «; and f; are usually set equal to zero.

Remark: Implicit methods can be used practically in so-called predictor-corrector methods. For
e.g. one may use ABk to step forwards using an explicit scheme to find ¢;,1, say, (the predictor
step) and then use this value in an implicit scheme, such as AMk find ;1 (the corrector step).

7.11 Time stability (absolute stability or A-stabilty)
7.11.1 Introduction

In the previous section stability is defined by the behaviour in the limit h — 0: a method is
stable if the approximation for the solution y(¢) at a fixed time ¢ = T remains bounded as h — 0.

Remark: Since neglecting O(h) terms is the same as setting f = 0 in the ODE, stability is
effectively determined by consider the canonical ODE 3/ = 0in 0 < ¢t < T with y(0) = 1.

A different question asks how small A needs to be in order to get good numerical results. We will
see that this question is connected to a different notion of stability that is called time stability
or absolute stability. It is determined by the behaviour of the approximate solution for fixed
h as time t — o0.

7.11.2 The canonical time-stability problem

Time stability is determined by looking at another canonical IVP given by
(62) y'(t) = My(t), t>0, with y(0) = «
where c is a real constant and A € C, Re {\} < 0.

The exact solution is y(t) = ae. Since Re {\} < 0 then y(t) — 0 as t — oo.

Defn: A method is called time stable or A-stable if, for fixed values of h > 0 and A € C,
Re{\} < 0, it mimics this behaviour (i.e. the approximate numerical solution also approaches
zero as t — 00.)

106

Remark: As for stability, the canonical time-stability problem is chosen so that an exact solution
to the numerical difference equation that results can be determined exactly. But its motivation
comes from

7.11.3 Example: Euler’s method

If we apply Euler’s method to the canonical time-stability problem we obtain
Yirr1 = Yi + hAy; = (1 + hA\)y;, Yo = ¢
The solution to this difference equation (y = Az" etc...) is
y; = c(1+ hA)"
We see that y; — 0 as ¢ — oo if and only if
1+ RN <1

or

IhA— (=1)] < 1.

Although h > 0 is real, A is considered to be complex and so we can describe this condition as a
function of A = h\ in the complex h-plane. Indeed, it says that the distance of h from the point
—1 on the real axis should be less than 1. This is the interior of a circle of radius 1 centred on
h = —1 and falls entirely to the left of the imaginary axis.

This region is called the time-stability region for Euler’s method.

For a particular value of A it restricts the choice of h for which the method is time stable or
absolutely stable.

For example, consider A € R and A < 0 then the above condition leads to —1 < 1+ hX < 1 or
—2 < hA < 0, and we obtain the following condition for h

0<h<_—==
<<)\

2k

We see that if |A| is very big then h has to be very small to get a reasonable result.

107

7.11.4 Example: Backward (implicit) Euler method

This scheme is new to us and given by

Yir1 = Yi + hf(iv1, Yig1)-
We apply it to the canonical time-stability problem (62) to get

1
i1 = Yi + hAy; i+l = i
Yirt = Yt AAYipr 0T Wi = Y

This difference equation has the solution
y; = c(1 — hA)™"
and it satisfies y; — 0 as ¢ — oo if and only if
|1 —hA| > 1.

This condition holds in the the exterior of a circle in the h = hA-plane with radius 1 and centred
on hA = 1.

Since we assumed that Re {\} < 0 and h > 0 we are only interested in the left half of the complex
hA-plane (Re {hA} < 0). Hence the condition |1 — hA| > 1 does not lead to any restriction on h
and the method is time stable for any value h > 0.

7.11.5 General result

We now apply a general k-step multistep method to our canonical problem ¢y = Ay, Re A < 0,
y(0) = ¢ to get:

Yir1 = a1l + ...+ QpYipi—k + hWABoyic1 + hABys + .+ PABLYir 1k

This is again a difference equation with constant coefficients, and we can find solutions of the
form y; = Az'. After dividing by z'*!'=* we obtain the stability polynomial

(63) (1 —hABy) 2" — (a1 + hABL) 2°71 — ... — (1 + hABr_1) 2 — (g + hABy) = 0.

Since (63) is degree k is has roots 21, ..., 2z, that depend on the value of h = hA.

108

Defn: A linear multistep method is time stable (absolutely stable/A-stable) for a given
value of A\ if all roots of the stability polynomial have modulus strictly less than one.

Defn: The time-stability region in the complex h-plane is the set of those values of h = hA
for which all roots of the stability polynomial have modulus less than one.

Remark: The boundary of the time-stability region can often be obtained explicitly by solving
equation (63) for h = h\ and setting z = €' where 0 < 0 < 27.

Theorem: The second Dahlquist barrier.
No A-stable linear multistep method of order p > 2 can exist.

This means there is a practical trade off between order of accuracy and stability.

7.12 Stiff ODEs

The investigation of time stability is particularly important for so-called stiff equations for
which small step sizes are often needed.

Defn: It is not easy to give a precise definition of a stiff ODE. Generally, it refers to differential
equations which contain a term which is rapidly varying such as, for example, a rapidly decaying
exponential term. The descriptor “stiff” originated from the numerical solution of mass-spring-
damper systems with a large damping stiffness (see HW sheet).

Example: Consider the IVP

d
(64) Y 100(y—cost) —sint, 0<t withy(0) = 1

Exact solution: One can readily find (integrating factors, or by making the substitution x(t) =
y(t) — cost which leads to 2’ = —100x) the general solution to be y(t) = cost + ce 1% and the
initial condition y(0) = 1 requires ¢ = 0.

109

So, finally, y(¢) = cost and this is not a suspicious-looking solution.

Numerical experiment: Let us solve (64) numerically using the following two methods:
(ii) BD2: yiy1 = %yi - %yi—l + %hfiﬂ

(although the second method is implicit there is no problem solving for y;,; in linear ODEs.)

We apply both methods to compute the value of y(1) whose exact values it cos(1) = 0.5403023.
BD2 behaves well for all h, but AB2 works only if h is small enough.

h AB2 BD2
0.2 14.40 0.5404
0.1 —5.7 x 10* 0.54033

0.05 || —1.91 x 10° | 0.540309
0.02 || —5.77 x 10 | 0.5403034
0.01 0.5403020 | 0.5403026
0.005 0.5403022 | 0.5403024

As already noted, the substitution x(t) = y(t) — cost transforms the ODE into our canonical
problem z'(t) = Az(t) with A = —100. So let’s consider time-stability of both methods with
A = —100.

(i) AB2: Remembering that f = Ay AB2 is written

3h h

i1 = Yi + =AY — Ay
Yit+1 y+2?J 2y1

and A = —100 so
Yir1 = (1 — 150h)y; + 50hy;_1.

It follows that the stability polynomial is 2% — (1 — 150h)z — 50h = 0, a quadratic equation
with two solutions. The method is time stable for those values of h for which the two roots

110

have modulus |z| < 1. The boundary of the stability region is most easily obtained by
rearranging the stability polynomial for A in terms of z and thereafter by setting z = 1 and

z = —1 (these are the real values of the boundary z = ¥ respectively)
b 22—z - 0 if z=1,
50 — 150z 0.01 if z=—1.

A more detailed investigation shows that |z;| < 1, 7 = 1,2 when 0 < h < 0.01 and this
is when the method is time stable. This result tallies with the numerical results discussed
previously.

(ii) BD2: Again with f = Ay, BD2 is

4 1 2
Yit1 = gyz‘ - gyz‘ﬂ + gh)\yz‘ﬂ
and with A = —100

The stability polynomial is therefore (3 + 200h)2% — 4z + 1 = 0 and rearranging for h in
terms of z gives

4/z—1/2* -3 0 it z=1,
200 {—1/25 if z=-1

This is harder to untangle. Since h > 0 there is no upper bound on h and a more detailed
investigation shows that the two roots z1, 22 satisfy |z;| < 1 for all h > 0. Therefore the
method is stable for all h as the table above confirms.

Remark: In general, implicit methods work better for stiff problems.

111

8 Ordinary differential equations: boundary value prob-
lems (BVPs)

8.1 Introduction

Let us consider canonical problems of the type

y' = flx,y,y) a<ax<b,

with
y(a)=a, y(b) =B
Remark 1: Instead of two conditions at the initial point x = a we now place one condition

at either end point. Since we cannot simply propagate initial information from one end point to
the other, new techniques are required for solving such problems.

Remark 2: These types of equations often occur in physical problems, for example for describing
a loaded beam, a hanging chain or a vibrating string. These physical problems are often position
dependent rather than time dependent, and for this reason we denote the independent variable
in this chapter by x instead of ¢.

Remark 3: We need to consider at least 2nd order ODEs since we have information to supply
to the ODE from two boundaries and thus need at least two constants of integration to appear
in the solution.

Remark 4: One approach is to use Shooting Methods in which one transforms the BVP
into an IVP by initially guessing a second initial condition at x = a propagating the solution to
x = b and then iterating the initial condition in order to satisfy the condition at x = b. The
name ‘shooting’ refers to attempts to find the range of a projectile fired at a target by adjusting
the initial speed and angle of the projectile. It’s a fairly natural and unsophisticated method to
implement.

8.2 Finite difference methods for linear problems

We consider specifically linear BVPs, still of the canonical 2nd order type
y' = flz,y,y) = p(@)y + q(@)y + r(z)

112

with Dirichlet?! boundary conditions

IDEA: The idea of the finite difference methods is to replace derivatives by finite difference
approximations, as we did in earlier. The method is best described by example:

8.2.1 Example:

Consider the BVP

with

Exact solution: The general solution to the ODE is found by integrating twice to get y(x) =
Ax + B. From the boundary conditions follows B = —1 and A = 1. Thus the exact solution is

y(x) =z — 1.
Finite difference solution: First divide the interval [0, 6] into n equal subintervals, each of
length h = 6/n. Mesh points are defined as z; = ih, i =0, 1,...,n where h = 6/n.

The term y”(x) in the ODE is approximated by the central difference approximation at each
of the mesh points (see earlier in course) using

i +h) = 2y(z; i —h) R,

where z; — h < & < z; + h. Letting y; =~ y(x;) represent the approximate value of the solution at
the mesh points, we note that the equal spacing of the central difference approximation allows
the above to be approximated (i.e. we neglect the error term) by

Vi1 — 2y + Y

0=1y"(z;) = 2 , forl1<i<n-—1.

2limplying the value of function is specified

113

The ODE only holds inside the interval 0 < x < 6 and not on the boundaries x =0 and z = 6
where boundary conditions apply instead. In terms of our discrete representation of the solution
on the mesh points we have

Yyo=-1, y.=5
Thus, for + = 1 we write

Yo—2y1 = —yo =1
and fori =2,...,n— 2,

Yir1 — 2Yi T ¥i1 = 0,
whilst for ¢ = n — 1 we have
—2Yn 1+ Yn-2=—"Yp=—-9

In total we have n — 1 equations for n — 1 unknowns, vy, ¥s, ... ¥y,—1 which we can arrange into
an (n — 1) x (n — 1) matrix system
-2 1 0 ... 0] 7y B
1 -2 1 . Y2 0
0 1 0 =
: T | : 0
0 ... 0 1 -2| Lyl [0

E.g.: Let n =6 so that h =1 and y; ~ y(i). Our matrix equation is 5 x 5 and given by

2 1 0 0 07/ [w 1
1 =2 1 0 0] |p 0
0 1 -2 1 ofl|wl=]0
0 0 1 -2 1| 0
0 0 0 1 2|y -5

Solutions can be found by Gaussian elimination and are given by

vo=-1L =0 wp=1 y=2 wu=3 y=4 y=0
That is, they have the form y; =i — 1 = y(i). That is, they agree with the exact solution.

Remark: One can show that the solution is exact also for other values of n. Why should this
be ? Because the exact solution is y(z) = x — 1 for which @) (x) = 0 and hence no error was
introduced in making the central difference approximation.

114

8.2.2 General problems

Let us now consider return to the general problem

y' = flz,y.y) =pl)y +qx)y +r(x), a<z<b

with

We define mesh points to be
x; = a+1ih, 1=0,1,...,n, where h = (b —a)/n.
First and second derivatives of y are both approximated using central difference approximations

y/(xl) _ y(xi + h) Q_hy(xl - h) + O(hQ)

y(@; + h) — 2y(z;) + y(x; — h)
72
both with errors of O(h?), the former proportional to 3 () and the latter proportional to ™) (x).

y' (i) = +O0(h?)

We insert these approximations into the ODE using y; ~ y(x;). and set p(z;) = pi, q(x;) = ¢
and r(z;) = r; which gives

i —21 i— 7 - Yi— ;
Yit1 hy2+y 1:piy+12hy 1+Qiyi+7"i> I<i<n-—1

for interior points and
Yo = &, Yn = 5

on the boundaries. We use these two values in the ¢ = 1 and ¢ = n — 1 equations to give

h h
Y2 <1 - 5]?1) — U1 (2 + h2Q1) = h’r — « (1 + 5101)
and

h h
—Yn-1 (2 + hQanl) + Yn—2 (1 + §pn1) =h’rp_1 —f (1 - Epnl)

115

respectively, whilst for : = 2,...,n — 2 we have

h
Yit1 (1 - §pz> — i (24 1*q) +yia (1 + —pz’) = h’r;

Making the abbreviations

h h
a; = =2 — h’q;, bi =1+ Spi, c=1—-p
q 2]0 2]0
gives us the n — 1 equations
yoc1 + yra1 = hPry — aby
Yir1Gi + Yi; + yio1by = Br 1=2,3,...,n—2
Yn—10n—1 + yn72bn71 = h27ﬂn71 - ﬁcnfl
which can be written in matrix form as
al Cl O oo DY O — yl - - h27’1 o abl
by ay ¢ : Y2 hry
0 _
0
Yn— h2r,,_
. : bn72 Ap—2 Cp—2 n—2 2 n-2
o .- ... 0 bn—l U1 | Yn—1] _h T'n—1 — Bcn—l_

This is a tridiagonal system that can be solved by Gaussian elimination. In fact there is an
LU decomposition which is defined iteratively for such systems.

8.2.3 Different types of boundary condition

In the above we have assumed Dirichlet-type boundary conditions in which y(a) and y(b) are
given. But one often has either Neumann-type conditions, or mixed Dirichlet-Neumann (so-
called Robin) conditions or even periodic boundary conditions. In each case, one has to deal
with representing y'(a) and/or y/(b).

116

E.g. Return to Example 8.2.1 and replace the BCs with y(0) = —1, ¥/(6) = 0. Since we no
longer have y,, = y(6) = —5 to use in the i = n — 1 equation, we have to do something different.
We use a backwards difference approximation

Yn = Yn—1

/ ~~
y'(6) ~ .

which allows us to write y,, &~ y,_1 + hy'(6) and we can use this in the i = n — 1 equation.

THIS SECTION IS OMITTED FROM THE COURSE IN 2025

8.3 Spectral methods for linear problems

We consider again our canonical boundary value problem (BVP) consisting of the 2nd order
linear ODE

y'(x) = p(x)y (z) + q(z)y(z) + r(z), a<x<b,
with (Dirichlet) BCs

(65) yla) =a, y(b) =B

It helps to write the ODE compactly as

(66) (Ly)(z) =r(x), a<xz<b
by defining the differential operator

d? d
L= a2 —p(l)* —q(x).

IDEA: Approximate the unknown function as

N

(67) y(@) ~ () =D cadna(@),

n=1

by expanding in terms of a known truncated set of basis functions ¢, (z) and unknown expan-
sion coefficients c,,.

117

The step (67) classifies the method as a spectral method since it is also assumed that the set
{pn(x),n =0,1,2,...} form a complete* set in interval [a, b].

For example, one might expand y(x) in a Fourier series on the interval [a, b] and this the outcome
of separation of variables methods in the APDE course, but here we assume the functions ¢, (x)
can be chosen much more generally.

As well as being complete it is also convenient that the functions ¢, (x) are orthogonal on the
interval [a, b] with respect to a given weight function w(x). Le.

b
(Om, On) = / W(T) P ()P () dz =0 if m#n

using the inner product notation from earlier in the course.

In (67) we decide N and ¢,,(z) (or w(z)) and must subsequently devise a method for determining
Ccn,m=0,1,...,N.

We imagine that increasing N will produce more accurate approximations to y(x) (and this can
be shown formally to be the case). We also note that, in practice, the choice of ¢, (x) may be
influenced by anticipation of certain features of the solution, but this is beyond our scope.

Using (67) in (65) gives two equations:

N N
Z Cn¢n—1(a) =, Z Cn¢n—1(b) =
n=1 n=1

A further N — 2 equations are now required to ensure a total of N equations for the N unknowns
1, ...,cn. These come from the ODE and we first substitite (67) into (66) to get

(68) L (Z cn¢n1(x)> = Z cnLpp1(x) = r(x), a<x<b.

(the last relationship is approximate because g(x) is not exact in general).

Next, we make the error (Lg)(x) — r(z) orthogonal to as many functions, ¢,,(z), as we can.
In other words, we take the inner product of both sides of equation (68) with ¢,, 1(x) where

22complete means that the functions span the space

118

m=1,..., N — 2 to give the N — 2 equations

N
ch<¢m717£¢nfl> - <¢m7177’>7 m = 157N_2
n=1

Such an approach can be referred to Galerkin’s method.

Taken together we obtain a linear algebra problem consisting of N equations for N unknowns.
It can be written in matrix/vector form:

Po(a) ¢1(a) . onaa(a) | [a a
¢o(b) ¢1(b) S ¢n-1(b) C2 B
(90, L) (P0,LP1) ... (¢, LON-1) : (¢o,7)
(o1, Ldo) (01,L¢1) ... (d1,Ldn-1) eno| | (017)
<¢N—3; L ¢o) <¢N—3., L) ... (dn-s, E ¢>N—1> |]CVJ;l_ _<¢N—.3> 7’)_

This linear system of equations can be solved with, for example, Gaussian elimination.

Remarks: There are two main advantages of this method

(i) It delivers a continuous representation of the solution y(x) (see equation (67)) that can be
evaluated anywhere, not just at the mesh points.

(ii) One can show that the method has a fast (exponential) convergence to the exact solution
as N increases.

8.3.1 Example

Consider the ODE
with

y(-) =a, y(+1) =4
Then £ = d?/dx?, r(z) =0 and a,b = —1, 1.

119

Exact solution: For this simple BVP, exact solution is easily found:
1 1
y(z) = 5(5 +a)+ 5(5 —a)r

Numerical solution: We now use Galerkin’s method to approximate the solution numerically

and make the choice: ,

y(r) = g(r) = Z cnln—1()

n=1

Le. N =3 and ¢,(x) = T,,(z) and Chebyshev polynomials. They are defined on [—1,1] and are
orthogonal w.r.t. the weight function w(z) = 1/v/1 — z2.

Recall: The Chebyshev polynomials are explicitly given by
T, (x) = cos(n arccos x)

and satisfy

0 m#n
<TmaTn>: 71—/2 m=n#0
T m=mn=>0.

The first four polynomials have the form
To(z)=1, Ti(x)==2, Ty(r)=22*-1, Ty(z) =42 — 3.
At the end points they take the values 7,,(1) = cos(n - 0) =1 and T,,(—1) = cos(nm) = (—1)"

Forming a system of equations:

The two BCs demand that

4 4
chTnfl<_1) = Q, Z CnTn71(1> - ﬁ
n=1 n=1
in other words
4 4
doal-D"=a, Y =4
n=1 n=1

The ODE reduces to
<Tm—17 Eg) - <Tm—17 0>

for m = 1,2 (since this gives us 4 equations in total). In other words

4

> Tt T) 1) =0, m=12

n=1
Putting everything into a single matrix system gives

1 1 1 _1 el

1 1 1 1 Co
(To, Ty) (To,T7) (To,Ty) (To,T3)| |cs
(T, Ty) (T, 1Y) (1, 13) (I, T3)] e

OO ™R

From the definitions 7¢ = 0, 77" = 0. We further find that
<T0vT?;/> - <T17 T2H> =0

because these inner products are integrals of odd functions from —1 < z < 1. Finally, we note
from the definitions that

Ty (x) =4 so (Ty, Ty) = 4, Ty (x) =24z so (T1,TY) = 127.
Thus we obtain the following system

—1

— =
—_
Q
(Y]

o O™

1
1 1

0 0 47 O c3
0O 0 0 12« Cy4

We do not need Gaussian elimination to solve this matrix equation. From the last two lines we
find ¢3 = ¢4 = 0. Then the top two lines give

C1 — Cy = Q, cp+c=p0

from which we deduce

a+f 0 —«
3 Cy = .

2 2

C1 =

121

The resulting approximation is

i) =220 P2,

and agrees with the exact solution !

Remark: If the interval [a,b] does not coincide with the interval [—1,1] but we wish to use
Chebyshev polynomials as our basis function then we can perform a change of variables of the
form 2’ = 142(x—b)/(b—a) to map x € [a, b] onto the interval 2’ € [—1,1]. The variable change
must be applied to the BVP, including derivatives using the chain rule (i.e. d/dx = (d2’/dz)d/da’
and da’/dz = 2/(b — a)).

122

Appendix: code used for producing results

This is purely for interest. I've written out some Fortran 77 code which I used to produce
numerical results.

Bisection method
program bisection
integer n,nmax

real a,b,x,fa,fb,fx
real fun

print *,’enter a’
read *,a

print *,’enter b’
read *,b

print *,’enter nmax’
read *,nmax

fa
b

fun(a)
fun(b)

if (faxfb.ge.0.0) stop
do 10 n=1,nmax

x = 0.5x(a+b)
fx = fun(x)

print *,n,a,x,b,fa,fx,fb,(b-a)/2.0%*n

if (fx*fa.ge.0.0) then

123

10 end do
end

real function fun(x)
real x
fun = exp(x)-3.0%*x

return
end

Fixed point iteration
program fixedpt
integer n,nmax

real x,xe,err
real fun

print *,’enter x0’
read *,x

print *,’enter x*’
read *,xe

print *,’enter nmax’

124

read *,nmax

err = x-xe

print *,0,x,e

do 10 n=1,nmax
x = fun(x)
print *,n,x,x-xe, (x-xe)/err
err = x-xe

10 end do
end

real function fun(x)
real x
fun = cos(x)

return
end

Newton-Raphson method
program newton
integer n,nmax

real x
real fun,fund

125

10

print *,’enter x0’
read *,Xx
print *,’enter nmax’
read *,nmax
print *,0,x
do 10 n=1,nmax

x = x-fun(x)/fund(x)

print *,n,x

end do
end

real function fun(x)
real x
fun = x**2-x-1

return
end

real function fund(x)
real x
fund = 2*x-1

return
end

126

Euler’s method

program euler
integer i,n

print *,’Enter N’
read *,n

real t,y,ye

=1.0
e =1.0
= 0.0
= 1.0/real(n)

b <

print *,t,y,ye
do 10 i=1,n

= y+h*x(-y+t)
= t+h

<
|

ye = 2.0xexp(-t)+t-1.0
print *,t,y,ye

10 end do
end

127

