
Numerical Analysis MATH30029

Lecture Notes Autumn 2025 (Adapted from notes of Martin Sieber)

©University of Bristol 2025. This material is copyright of the University unless explicitly stated oth-
erwise. It is provided exclusively for educational purposes at the University and is to be downloaded or
copied for your private study only.

Contents

1 Finite precision arithmetic and error 4

1.1 Binary storage: approximation to numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Limits on the size of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Rounding errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Linear systems of equations 7

2.1 Invertible matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Rounding errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 LU -decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Root finding 18

3.1 Bisection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Fixed-point iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Newton-Raphson method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Aitken’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Solving systems of nonlinear equations: Multi-dimensional Newton’s method . . . . . . 27

3.6 The steepest descent method (the gradient method) . . . . . . . . . . . . . . . . . . . . 29

4 Interpolation: approximation of curves by polynomials 32

4.1 Polynomial approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Lagrange interpolating polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Differentiation 36

5.1 Difference formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Round-off errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Richardson extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Integration 43

1



6.1 The trapezoidal rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Simpson’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Romberg integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Problems in the evaluation of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Weighted integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.7 Gaussian quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Ordinary differential equations: initial value problems (IVPs) 57

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Euler’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Local truncation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Global error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.5 Solutions of linear difference equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.6 Euler’s method for higher-order ODEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.7 Higher-order Taylor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.8 Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.9 Multistep methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.10 Stability (or zero-stability) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.11 Time stability (absolute stability or A-stabilty) . . . . . . . . . . . . . . . . . . . . . . . 72

7.12 Stiff ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Ordinary differential equations: boundary value problems (BVPs) 77

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Finite difference methods for linear problems . . . . . . . . . . . . . . . . . . . . . . . . 77

8.3 Spectral methods for linear problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2



Course Introduction

Numerical Analysis concerns the development and study of computational methods for approximating
solutions to problems in mathematics involving continuous variables (as opposed to the study of discrete
mathematics which normally falls within the remit of Computer Science.)

In many application areas in the physical sciences problems arise which cannot be solved exactly us-
ing even the most sophisicated mathematical methods and so computational methods are devised to
approximate their solutions.

There are various important considerations to when devising these methods/algorithms such as efficiency
(speed), accuracy, robustness.

Numerical Analysis is largely concerned with answering these questions thereby allowing us to under-
stand which algorithms are best suited to certain tasks.

We are going to study a subset of the most important problems in Numerical Analysis and the ones
which are most relevant to practical applications. We cannot cover all the things we want and major
omissions include a plethora of matrix methods (condition number, QR factorisation, Singular-Value
Decomposition, Gauss-Seidel Interation, conjugate-gradient method). For those interested, books by
Golub and Van Loan or Trefethen make excellent reading.

The type of questions that we will investigate are

• What kind of methods exist ?

• When does a method converge ?

• How rapidly does it converge ?

• Is a method stable ?

• How big is the error of an approximation ?

• What are the limitations of making calculations on a computer (rounding error effects) ?

This unit is not about writing computer code. The implementation of a numerical method into a
computer program is an additional step requiring the development of algorithms.

If you want to read about a topic in more detail then a recommended course text is Numerical Analysis
by Burden and Faires (available online via a link from the course webpage) and this covers most of the
topics in the course. There are many other good books on Numerical Analysis which can be found in
the Numerical Analysis section in the Queen’s Library (books QA 297 ***).

3



1 Finite precision arithmetic and error

When making calculations on a calculator, or computer, numbers are not stored exactly (e.g. π =
3.1416 . . . is irrational and 1/3 = 0.3333 . . . recurring both contain an infinitely long decimal representa-
tion). Most modern digital devices store numbers using 64-bit (or double precision; it used to be more
common to use 32-bit or single precision) which is set by a universal standard: IEEE 754-2019.

1.1 Binary storage: approximation to numbers

Recall the conversion of a binary representation of a number to a decimal representation works according
to this example,

101101 = 25 + 23 + 22 + 20 = 32 + 8 + 4 + 1 = 45

64-bit means that a number stored on a computer is represented by 64 bits of memory each of which
can either be set to 0 or 1. E.g. a number x is represented by

x = 0︸︷︷︸
s

10000000011︸ ︷︷ ︸
c

1011100100010000000000000000000000000000000000000000︸ ︷︷ ︸
f

.

The first bit (being 0 or 1) represents the sign of the number. The next 11 bits represent the (base
2) exponent and the final 52 bits are the binary fractional representation of the number. That is, the
decimal representation of a number is given by

(−1)s(1 + f)2c−1023.

In our example, this results in

x = (−1)02(2
10+21+20−1023)

(
1 +

(
1

2

)1

+

(
1

2

)3

+

(
1

2

)4

+

(
1

2

)5

+

(
1

2

)8

+

(
1

2

)12
)

whose decimal representation is
x = 27.56640625.

The next largest number we can represent exactly is found by replacing the last digit by 1, or

x = 010000000011 1011100100010000000000000000000000000000000000000001

which is, in decimal,

x = 27.5664062500000017763568394002504646778106689453125

and the next smallest number is

x = 010000000011 1011100100001111111111111111111111111111111111111111

which is, in decimal,

x = 27.5664062499999982236431605997495353221893310546875.

It’s not the number of decimal places represented by binary storage of numbers that is the immediate
problem, it is that only some numbers can be represented exactly.

The relative difference between two consecutive numbers is evidently 1/252 ≈ 0.22 × 10−16 and we
commonly refer to a 64-bit systems as being accurate to roughly 16 digits. For 32-bit systems, the
fraction (f) is 23 bits long, the exponent (c) is 8 bits so and the relative error is 1/223 ≈ 1× 10−7 and
we commonly refer to 32-bit systems as being accurate to roughly 7 digits.

4



1.2 Limits on the size of numbers

As well as limited accuracy, the finite exponent means that computers have upper and lower limits on
the size of numbers that can be stored. For 64-bit systems the smallest positive non-zero number is

xmin = (−1)021−1023(1 + 0) ≈ 0.22× 10−307

and the largest number is

xmax = (−1)022046−1023(1 + 1− 2−52) ≈ 0.18× 10309.

Attempts to store numbers smaller than xmin or larger than xmax result in what is referred to as
underflow and overflow. The values of c = 0 (00000000000 in binary) and c = 2047 (1111111111) are
reserved this. A computer will commonly represent numbers smaller than xmin as zero and continue.
For numbers exceeding xmax a computer is likely to issue a “NaN” (not a number) warning, or ‘crash’.

Q: Do we ever have to worry about numbers so big or so small ? Seems unlikely.

A: Not all the time, but certainly sometimes1.

1.3 Rounding errors

Binary storage is not easy to work with since we are used to working in a decimal system. Based on
above, we assume we have a system which stores N digits accurately (N = 15 for 64-bit systems).

E.g.: if N = 5 we would write

π = 3.1416, e−1 = 3.6787× 10−1 (or, more simply, 0.36787)

and we say we have 5-digit precision.

Remark: there are two ways of truncating the representation of a number: chopping and rounding.
Throughout this course, we adopt rounding the last digit to the nearest whole number so that, for e.g.,
3.1415926 is represented as 3.1416 (5 digits) and 3.14159 (6 digits).

A consequence of having to approximate numbers is that errors can be introduced into arithmetic. The
operations +,−,×, / are called floating point operations or flops.

For e.g. with 5-digit precision, x = π × e−1, which has an exact value 1.155727 . . . is represented
numerically by

x̃ = 3.1416× 0.36787 = 1.1557.

Here there is no loss of accuracy due to the truncated storage of π and of e−1 and through the arithmetic
operation of multiplication. However, consider x = π/e−1 = 8.53973 . . . where the use of 5-digit precision
results in

x̃ = 3.1416/0.36787 = 8.5395,

and is not the exact value x rounded to 5 digits. This is a manifestation of round-off error and in a
moment we show how these small errors can accumulate into larger errors.

Defn: There are two ways of quantifying error:

(i) Absolute error: e = x− x̃.

1The maiden flight of the Ariane 5 rocket in 1996 ended in disaster, exploding just 40 seconds after take off. The cause
was found to be the conversion of a 64-bit decimal to a 16-bit integer which was too large to be represented.

5



(ii) Relative error: er =

∣∣∣∣x− x̃

x

∣∣∣∣. E.g. if the relative error is 0.02, this means the error is 2% of the

exact value.

Defn: In a system with N -digit precision an exact number x is approximated by x̃ so that∣∣∣∣x− x̃

x

∣∣∣∣ < ϵ = 10−N

and ϵ is the machine accuracy.

1.3.1 Example

Compute f(x) = x3− 6.1x2+3.2x+1.5 at x = 4.71 using 3-digit arithmetic. In the table we work from
left to right.

x x2 x3 6.1x2 3.2x f(x)

Exact 4.71 22.1841 104.487111 135.323301 15.072 −14.263899

3-digit 4.71 4.71× 4.71 = 22.2 22.2× 4.71 = 105 135 15.1 −13.4

The relative error is

er =

∣∣∣∣−14.263899 + 13.4

−14.263899

∣∣∣∣ ≈ 0.06

equivalent to 6% which is a lot higher than 0.1% associated with 3-digit accuracy.

Q: Can we do anything to improve the accuracy ?

A: In this case, consider the nested calculation: f(x) = ((x−6.1)x+3.2)x+1.5. With this expression,
using 3-digit accuracy we end up with a relative error of 0.0025 or 0.25%.

Why ? If we count the number of flops needed for the first calculation it is 9(×) plus 3(±). In the
second calculation it less that half this: 2(×) plus 3(±) (i.e. fewer errors).

6



2 Linear systems of equations

In this section we consider solutions x1, x2, . . . , xn to the system of n equations:

(1)

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

...
...

an1x1 + an2x2 + . . .+ annxn = bn.


We are already comfortable writing (1) as

Ax = b

where

A =

a11 . . . a1n
...

...
an1 . . . ann

 , x =

x1...
xn

 , b =

b1...
bn

 .

We can also express (1) as
n∑

j=1

aijxj = bi, i = 1, 2, . . . , n

Provided the inverse, A−1, exists the solution is represented by

x = A−1b

Remark 1: A−1 is a notational device: it doesn’t tell you what A−1 is.

Remark 2: Indeed, the inverse exists iff det(A) ̸= 0 where det(A) is called the determinant of A.
Then A is said to be non-singular and the solution is unique.

If det(A) = 0 then A is said to be singular. In this case, there may either be no solution or infinitely
many solutions. E.g. (

1 1
2 2

)(
x1
x2

)
=

(
1
α

)
and det(A) = 0.

• If α = 2 then solution is x1 = 1− x2 for any x2.
2

• If α ̸= 2 then there are no solutions.

E.g.: If n = 2 we know that there is an explicit formula:

A−1 =
1

det(A)

(
a22 −a12
−a21 a11

)
where det(A) = a11a22 − a12a21 is the determinant.

2there is an overlap with eigenvectors and eigenvalues that we are not going to follow here

7



Remark: In fact, there is an explicit formula for (or algorithm) for calculating A−1 for n > 2, known
as Cramer’s Rule3. E.g. n = 3

A−1 =
1

det(A)



∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ −
∣∣∣∣ a12 a13
a32 a33

∣∣∣∣ ∣∣∣∣ a12 a13
a22 a23

∣∣∣∣
−
∣∣∣∣ a21 a23
a31 a33

∣∣∣∣ ∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ −
∣∣∣∣ a11 a13
a21 a23

∣∣∣∣∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ −
∣∣∣∣ a12 a11
a32 a31

∣∣∣∣ ∣∣∣∣ a11 a12
a21 a22

∣∣∣∣


where

det(A) = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ .
The process is recursive: for n = 4, each entry of A−1 is expressed as the determinant of a 3× 3 matrix,
which is itself expressed in terms of 2× 2 determinants (as above). And so on.

Q: OK, so are we done ?

A: No, because a careful counting of the flops needed to invert an n × n matrix shows they scale like
(n+ 1)!. This is bad since (Stirling’s formula) n! grows like nn/

√
n. For example, imagine with n = 10

the calculation of an inverse took 10−5 seconds on a computer. For n = 30 it would take 4000 years !

2.1 Invertible matrices

A general class of matrices that are invertible are orthogonal matrices Q satisfying QQT = QTQ = I.
Evidently Q−1 = QT . Otherwise examples of matrices with explicit inverses are rare.

2.1.1 Diagonal Matrices

If aij = αiδij then clearly a−1
ij = α−1

i δij . Simple.

2.1.2 Triangular systems

If the matrix U is upper triangular (uij = 0 if i > j) then the system Ux = b is easy to solve

u11x1 + u12x2 + u13x3 + . . . + u1nxn = b1

u22x2 + u23x3 + . . . + u2nxn = b2
...

...
...

...

un−1n−1xn−1 + un−1nxn = bn−1

unnxn = bn.

If uii ̸= 0, i = 1, 2, . . . , n, (this is equivalent to detU =
∏n

i=1 uii ̸= 0) then the unknowns xj can be
computed by backward substitution:

xn =
bn
unn

;

xj =

bj −
n∑

k=j+1

ujkxk

ujj
, j = n− 1, n− 2, . . . , 1.

3after Gabriel Cramer (1704-1752), who published the rule for arbitrary n in 1750

8



Similarly if the matrix L is lower triangular (lij = 0 if i < j) then the system Lx = b can be solved
by forward substitution:

x1 =
b1
l11

;

xj =

bj −
j−1∑
k=1

ljkxk

ljj
, j = 1, 2, . . . , n− 1.

Sometimes it is possible to invert lower triangular matrices explicitly. Of use later on is the following
(see homework):

Lk =



1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . 1

−lk+1,k 1

−lk+2,k 0
. . .

. . .
...

...
...

...
. . .

. . . 0
0 · · · −ln,k 0 · · · 0 1


=⇒ L−1

k =



1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . 1

lk+1,k 1

lk+2,k 0
. . .

. . .
...

...
...

...
. . .

. . . 0
0 · · · ln,k 0 · · · 0 1


.

2.2 Gaussian elimination

Although named after Carl Gauss, the method was used in China at least as far back as 179AD.

The idea is to apply elementary row operations to reduce the matrix A to upper triangular form
allowing the resulting system to be solved using back substitution.

There are three row operations that do not change the solution vector x:

(i) multiply row Ri by a constant λ: Ri → λRi

(ii) add λ times row Rj to row Ri: Ri → Ri + λRj

(iii) interchange rows Ri and Rj : Rj ↔ Ri

We’ll use (for now) the last two operations to bring the system into triangular form. This is the
Gaussian elimination process. It is best described using an example.

2.2.1 Example

Solve the following for x:  3 6 9
2 5 2

−3 −4 −11

 x =

 3
4

−5

 .

We perform the row operations

R2 → R2 −
2

3
R1

R3 → R3 + R1

9



to obtain zeros below the diagonal in the first column: 3 6 9
0 1 −4
0 2 −2

 x =

 3
2

−2

 .

Next, the row operation
R3 → R3 − 2R2

produces a zero below the diagonal in the second column: 3 6 9
0 1 −4
0 0 6

 x =

 3
2

−6

 .

Now the system is upper triangular it can be solved by backward substitution

6x3 = −6 =⇒ x3 = −1

x2 − 4x3 = 2 =⇒ x2 = −2

3x1 + 6x2 + 9x3 = 3 =⇒ x1 = 8.

Remark 1: At each step of the Gaussian elimination, the matrix A and the vector b change, but the
solution vector x remains unaltered.

Remark 2: A compact space-saving device that helps simplify the presentation involves performing
the row operations on the n× (n+ 1) augmented matrix Ã:

Ã = [A,b] =

a11 . . . a1n b1
...

...
...

an1 . . . ann bn

 .

2.2.2 General method

We apply the method to a general matrix A. In step 1 of the Gaussian elimination process one applies
row operations to obtain zeros below the diagonal in the first column.

Step 1:

a
(1)
ij = aij −

ai1
a11

a1j

for j = 1, . . . , n with

b
(1)
i = bi −

ai1
a11

b1

for i = 2, . . . , n and results in an augmented matrix of the form
a11 a12 . . . a1n b1

0 a
(1)
22 . . . a

(1)
2n b

(1)
2

...
...

...
...

0 a
(1)
n2 . . . a

(1)
nn b

(1)
n

 .

Remark: This is possible only if a11 ̸= 0; the matrix element a11 is called the pivot element of the
operations in step 1.

10



Step k: We can apply the same set of row operations to each reduced matrix. I.e. for 1 ≤ k ≤ n − 1
we define

a
(k)
ij = a

(k−1)
ij −

a
(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj

for j = k, . . . , n with

b
(k)
i = b

(k−1)
i −

a
(k−1)
ik

a
(k−1)
kk

b
(k−1)
k

for i = k, . . . , n requiring pivot element a
(k−1)
kk ̸= 0. E.g. After step 2 using k = 2 results in the

augmented matrix 
a11 a12 a13 . . . a1n b1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n b

(1)
2

0 0 a
(2)
33 . . . a

(2)
3n b

(2)
3

...
...

...
...

...

0 0 a
(2)
n3 . . . a

(2)
nn b

(2)
n

 .

and the process continues until the matrix is in upper triangular form.

Remark: A simple calculation4 of the flops needed shows it grows like n3, with increasing n, significantly
less rapdily than (n+ 1)!.

Q: What can go wrong?

A: A pivot element can be zero!

2.2.3 Example (Pivoting)

Consider slightly altering Example 2.2.1 to give the augmented matrix 3 6 9 3
2 4 2 4

−3 −4 −11 −5

 .

We perform the row operations

R2 → R2 −
2

3
R1

R3 → R3 +R1.

This leads to  3 6 9 3
0 0 −4 2
0 2 −2 −2


and cannot continue with the usual Gaussian elimination process. The solution is to swap rows to
obtain a non-vanishing pivot element and then continue. I.e. 3 6 9 3

0 2 −2 −2
0 0 −4 2

 .

In this example we obtain a matrix which is already in triangular form.

4Specifically, we can deduce that there are a total of n(n + 1)/2 divisions, (2n3 + 3n2 − 5n)/6 multiplications, and
(2n3 + 3n2 − 5n)/6 additions for a total of approximately 2n3/3 operations.

11



Remark 1: The process of swapping rows in order to obtain a non-vanishing pivot element is called
pivoting.

Remark 2: In the case that the pivot element and all elements below it are zero then one can show
that det(A) = 0 (simple: you try it !).

2.3 Rounding errors

Rounding errors can affect Gaussian elimination. Here’s a simple example.

2.3.1 Example

Consider the following system of equations with ϵ ≪ 1

ϵx1 + x2 = 1
x1 + x2 = 2

}
The exact solution is

x1 =
1

1− ϵ
, x2 =

1− 2ϵ

1− ϵ

and we can use the Binomial expansion to give x1 = 1 + ϵ + ϵ2 + . . . ≈ 1 + ϵ when ϵ ≪ 1. Similarly,
x2 ≈ (1− 2ϵ)(1 + ϵ+ ϵ2 + . . .) ≈ 1− ϵ.

Take ϵ = 10−4 and let us perform calculations with 3-digit precision. Our augmented matrix is

(2)

[
10−4 1 1
1 1 2

]
.

The row operation R2 → R2 − 104R1 leads to (exactly)[
10−4 1 1
0 −9999 −9998

]
.

However, if we work with 3-digit precision this gets rounded (e.g. 9999 = 9.999× 104 but since we can
only store 3 digits we round to the nearest 3-digit number, 1.00× 105) to[

10−4 1 1
0 −10000 −10000

]
.

Then we have the upper triangular system

10−4x1 + x2 = 1,

−10000x2 = −10000,

with the solutions x2 = 1 and x1 = 0 instead of x2 ≈ 1 and x1 ≈ 1.

Q: Why did this happen ?

A: The pivot element (though not zero) is much smaller than the element below it. In fact one can
formally show that the Gaussian elimination process is numerically unstable: the combined effect of
multiple row operations propagate and inflate errors until they dominate solutions.

12



2.3.2 Partial pivoting

A solution is to interchange rows before Gaussian elimination[
1 1 2

10−4 1 1

]
.

The row operation R2 − 10−4R1 → R2 performed with 3-digit precision now leads to[
1 1 2
0 1 1

]
whose solution is x2 = 1 and x1 = 1 and matches the exact solution expressed to 3-digit precision.

The method of partial pivoting formalises this process. Before step k of the Gaussian elimina-
tion process the row having the element with the largest magnitude amongst the leading column

(a
(k−1)
kk , . . . , a

(k−1)
nk ) is interchanged with the the row containing the pivot element.

2.3.3 Scaled partial pivoting

Partial pivoting works in many cases, but not always. Consider, for example, Example 2.3.1 but with
the first row multiplied by 2× 104. We obtain

2x1 + 2× 104x2 = 2× 104

x1 + x2 = 2.(3)

The solution is same, x1 ≈ 1, x2 ≈ 1. However, this no longer requires partial pivoting and so Gaussian
elimination leads to the same problem as before and we obtain x2 ≈ 1 and x1 ≈ 0 when performing
calculations with 3-digit precision.

Q: Why ?

A: The largest elements in different rows have vastly different magnitude.

A possible solution (Scaled partial pivoting): before starting define a scale factor for each row:

si = max
1≤j≤n

|aij |, i = 1, . . . , n

which is non-zero otherwise the matrix is singular. We now do R1 ↔ Rp where

|ap1|
sp

= max
1≤k≤n

|ak1|
sk

The effect of scaling is to ensure that the largest element in each row has a relative magnitude of 1. In
the example above this reduces (3) to (2) and now partial pivoting works. For larger than 2×2 matrices
subsequent row interchanges are performed using the same principle noting that the values of si used
are computed only once before step 1 and move with the row interchanges.

Remark: Other pivoting strategies. Complete pivoting includes row and column interchanges, but
comes with an additional computational cost that is only justified if high accuracy is critical.

13



2.4 LU-decomposition

Imagine that it is possible to write A as the product of two factors

A = LU,

where L is a lower triangular matrix and U an upper triangular matrix. It follows that

b = Ax = LUx = Ly

(say) where we have written y = Ux. Now we can compute y from Ly = b using forward substitution,
and then compute x from Ux = y using back substitution.

The row operations of Gaussian elimination at step 1 are expressed as

Ri → Ri − li1R1, i = 2, . . . , n, where li1 =
ai1
a11

.

These row operations transform the matrix A into a new matrix A(1) = L1A where

L1 =


1 0 0 · · · 0

−l21 1 0 · · · 0

−l31 0 1
. . .

...
...

...
. . .

. . . 0
−ln1 0 · · · 0 1

 .

It follows that A = L−1
1 A(1) (see Section 2.1.2). I.e.

a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
...

...
...

...
...

...
...

an1 an2 · · · · · · ann


=



1 0 0 0 · · · 0
l21 1 0 0 · · · 0
l31 0 1 0 · · · 0

l41 0 0 1
. . .

...
...

...
...

. . .
. . . 0

ln1 0 0 · · · 0 1





a11 a12 · · · · · · a1n

0 a
(1)
22 · · · · · · a

(1)
2n

...
...

...
...

...
...

...
...

...

0 a
(1)
n2 · · · · · · a

(1)
nn


where a

(1)
ij = aij − ai1 a1j/a11 as in Gaussian elimination.

Remark: This process is not Gaussian elimination: we are not applying row operations to the vector
b. In fact this does not involve b at all.

Step 2: This process can be continued. Now the Gaussian elimination process is applied to A(1) and

the new pivot element a
(1)
22 is used to eliminate the matrix elements in the second column below the

diagonal. The row operations are

Ri → Ri − li2R2, i = 3, . . . , n where li2 =
a
(1)
i2

a
(1)
22

and we can encode this as L2A
(1) = A(2) where

L2 =



1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 −l32 1 0 · · · 0

0 −l42 0 1
. . .

...
...

...
...

. . .
. . . 0

0 −ln2 0 · · · 0 1


14



in exactly the same manner as before. So A(1) = L−1
2 A(2) and A = L−1

1 L−1
2 A(2) or

a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
...

...
...

...
...

...
...

an1 an2 · · · · · · ann


=



1 0 0 0 · · · 0
l21 1 0 0 · · · 0
l31 l32 1 0 · · · 0

l41 l42 0 1
. . .

...
...

...
...

. . .
. . . 0

ln1 ln2 0 · · · 0 1





a11 a12 a13 · · · · · · a1n

0 a
(1)
22 a

(1)
23 · · · · · · a

(1)
2n

0 0 a
(2)
33 · · · · · · a

(2)
3n

...
...

...
...

...
...

...
...

0 0 a
(2)
n3 · · · · · · a

(2)
nn


.

One can continue this process until Gaussian elimination is complete. The final result is

a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
...

...
...

...
...

...
...

an1 an2 · · · · · · ann


=



1 0 0 0 · · · 0
l21 1 0 0 · · · 0
l31 l32 1 0 · · · 0

l41 l42 l43 1
. . .

...
...

...
...

. . .
. . . 0

ln1 ln2 ln3 · · · ln,n−1 1





u11 u12 u13 · · · · · · u1n
0 u22 u23 · · · · · · u2n
0 0 u33 · · · · · · u3n
...

. . .
. . .

...
...

. . .
. . .

...
0 0 · · · · · · 0 unn


where we have labelled the elements of the matrix obtained from Gaussian elimination by uij . The
result is A = LU as required.

2.4.1 Advantages of LU-decomposition

(i) Calculating the determinant of A, since

det(A) = det(L) det(U) =
n∏

i=1

uii.

This is much quicker than the Laplace expansion along rows or columns if n is large.

(ii) Particularly useful for solving Axi = bi for multiple RHS vectors bi, since A = LU is done only
once.

(iii) Can use (ii) to find A−1. Consider i = 1, 2, . . . , n and set (bi)j = δij and then we can organise the
multiple systems in the following way:

A



...
...

...

x1 x2 · · · xn

...
...

...

 =



...
...

...

b1 b2 · · · bn

...
...

...

 = I.

Multiplying LHS and RHS by A−1 gives us

...
...

...

x1 x2 · · · xn

...
...

...

 = A−1

Therefore the n columns of A−1 are the n solutions, xi of Axi = bi for i = 1, . . . , n with (bi)j = δij .

Remark: The LU-decomposition is possible if the Gaussian elimination can be performed without row
interchanges. What if it cannot ?

15



2.4.2 Partial Pivoting and Permutation Matrices

Consider, for e.g.

A =

1 2 3
4 2 1
6 3 6

 .

Let us partial pivot to promote the 6 to the top LH element. I.e. we have a pre-step 1 R1 ↔ R3. This
row interchange can be encoded by premultiplying by a permutation matrix

P13 =

0 0 1
0 1 0
1 0 0

 (= I under a row swap of R1 ↔ R3.)

I.e.

P13A =

6 3 6
4 2 1
1 2 3


Now step 1 is R2 → R2 − 2

3R1 and R3 → R3 − 1
6R1 to get

P13A =

1 0 0
2
3 1 0
1
6 0 1

6 3 6
0 0 −1
0 3

2 2

 = L−1
1 A(1).

To continue we need to interchange R2 and R3 and this requires another permutation matrix

P23 =

1 0 0
0 0 1
0 1 0

 (= I under a swap of R2 ↔ R3.)

Remark: Permutation matrices belong to a class of Orthogonal matrix and satisfy (Pij)
−1 = (Pij)

T .
Since the swap needs to be applied to A(1) we write

P13A = L−1
1 P−1

23 P23A
(1).

and it turns out (below) to be useful to premultiply by P23 so that

PA = P23L
−1
1 P T

23U

where

U = P23A
(2) =

6 3 6
0 3

2 2
0 0 −1


is the final result of Gaussian elimination with partial pivoting,

P = P23P13 =

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

 =

0 0 1
1 0 0
0 1 0

 (= I under R2 ↔ R3 and R1 ↔ R3)

and

L = P23L
−1
1 P T

23 =

1 0 0
0 0 1
0 1 0

1 0 0
2
3 1 0
1
6 0 1

1 0 0
0 0 1
0 1 0

 =

1 0 0
1
6 1 0
2
3 0 1


where the premultiplication by P23 swaps rows and the post multiplication swaps columns !

Remarks: This is quite complicated but LU with pivoting can be summarised as PA = LU in which:

16



• where P records all the row interchanges, applied to I;

• as you develop L through Gaussian elimination steps, any row changes need to be applied to L.

• Alternatively, do all necessary row interchanges first (i.e. do PA) and apply LU decomposition
to PA.

• Note P−1 = P T is also an orthogonal matrix (see homework).

• When it comes to solving Ax = b write PAx = Pb = b′ first and then substitute PA = LU and
then forwards/backwards substitute.

17



3 Root finding

We consider methods for determining numerical solutions to

f(x) = 0

when they cannot be determined explicitly (e.g. ex + x = 0). Normally root-finding methods are
iterative and meaning the solution is not found in a finite number of steps.

I.e. we generate a sequence x0, x1, x2 s.t. xn is determined in terms of previous elements in the sequence
with the goal that xn → x∗ as n → ∞ where f(x∗) = 0.

3.1 Bisection method

Suppose we identify a and b such that f(a) and f(b) have opposite signs (f(a) · f(b) < 0). It follows by
the intermediate value theorem (IVT) that there exists at least one root x = x∗, x∗ ∈ (a, b) such that
f(x∗) = 0. There can be any more than one root, but there must be an odd number of roots.

The bisection algorithm consists of these steps.

1. Set n = 1

2. Let xn = 1
2(a+ b).

3. Calculate f(xn).

4. If f(xn) = 0 then x∗ = xn and we are DONE.

Else if f(xn) · f(a) < 0 then ∃ root in (a, xn): redefine b = xn and continue to 5.

Otherwise f(xn) · f(a) > 0 then ∃ root in (xn, b): redefine a = xn and continue to 5.

5. Increase n by 1 and go back to step 2.

Remark: We need to force the iteration to stop after N steps, say.

3.1.1 Example

Find all roots of f(x) = ex − 3x = 0.

Draw graphs of ex and 3x and identify roots of f(x) as the values of x where curves intersect, which
allows us to estimate intervals (a, b) which can be used to initiate the Bisection method.

Alternatively we can sample the function f(x) at a few values of x. Here we have f(0) > 0, f(1) < 0
and f(2) > 0. There is one root in the interval [0, 1] and another in the interval [1, 2].

Here is the method with a = 1, b = 2 up to n = 9. The exact value of the root is x∗ = 1.51213 . . ..

Remark 1: The maximum error after n iterations satisfies

|xn − x∗| ≤ |b− a|
2n

and a, b are end points of the original interval. I.e. the maximum error is only halved by an iteration
and although the method is very robust and convergence is guaranteed, it is considered to be slow.

18



n a xn b f(a) f(xn) f(b) max. err.

1 1.0 1.50000 2.0 -0.28172 -0.01831 1.38906 2−1

2 1.50000 1.75000 2.0 -0.01831 0.50460 1.38906 2−2

3 1.50000 1.62500 1.75000 -0.01831 0.20342 0.50460 2−3

4 1.50000 1.56250 1.62500 -0.01831 0.08323 0.20342 2−4

5 1.50000 1.53125 1.56250 -0.01831 0.03020 0.08323 2−5

6 1.50000 1.51562 1.53125 -0.01831 0.00538 0.03020 2−6

7 1.50000 1.50781 1.51562 -0.01831 -0.00660 0.00538 2−7

8 1.50781 1.51172 1.51562 -0.00660 -0.00064 0.00538 2−8

9 1.51172 1.51367 1.51562 -0.00064 0.00236 0.00538 2−9

Remark 2: If we want to compute a root to within a prescribed accuracy or tolerance ϵtol > 0 then
the number of steps should be the smallest N s.t. that

|b− a|
2N

< ϵtol

which rearranges to
N > log(|b− a|/ϵtol)/ log(2).

3.2 Fixed-point iteration

If we want to find x∗ such that f(x∗) = 0 we can express the condition instead as x∗ = g(x∗). This is
most simply done by defining g(x) = x + f(x) but this is not the only way (e.g. g(x) = x − f(x) also
works).

Defn: If x∗ satisfies
x∗ = g(x∗)

it is said to be a fixed point of g(x).

Defn: A fixed-point iteration is defined by

xn+1 = g(xn), n = 0, 1, 2, 3, . . .

for a given initial guess x0 such that xn → x∗ as n → ∞.

Remark: Fixed point iterations are often easier to analyse than root-finding methods.

Numerical experiment: Use a fixed-point iteration to find a root of f(x) = cosx− x = 0.

Choose g(x) = cos(x) and x0 = 1. I.e. we solve xn+1 = cosxn with x0 = 1.

Remark: The numerical iteration converges to the fixed point x∗ = 0.739085 . . . and the errors en =
xn−x∗ decrease by a factor that is approximately constant (en/en−1 ≈ 0.673 for large n). This is slower
than bisection.

Q: Does the recasting of f(x) = 0 into g(x) = x affect the convergence ?

A: Yes, as this example shows...

19



n xn en en/en−1

0 1.000000 0.260915

1 0.540302 −0.198783 −.761869

2 0.857553 0.118468 −.595967

3 0.654290 −0.084795 −.715765

4 0.793480 0.054395 −.641488

5 0.701369 −0.037716 −.693376

6 0.763960 0.024875 −.659516

7 0.722102 −0.016983 −.682734

8 0.750418 0.011333 −.667304

9 0.731404 −0.007681 −.677785

10 0.744237 0.005152 −.670767

...
...

...
...

20 0.739184 0.000099 −.673558

...
...

...
...

30 0.739087 0.000002 −.673620

3.2.1 Example

Consider finding the roots of f(x) = x2 − x− 1 (i.e. the solutions x = x∗ of f(x) = 0).

Here are four different fixed point iterations xn+1 = g(xn) whose fixed points x∗ coincide with the roots
of f(x):

(4)

xn+1 = g1(xn) ≡ x2n − 1;

xn+1 = g2(xn) ≡ 1 +
1

xn
;

xn+1 = g3(xn) ≡
√
1 + xn;

xn+1 = g4(xn) ≡ xn − x2n − xn − 1

2xn − 1
.

(check: in each case assume xn → x∗ to show that f(x∗) = 0).

Let’s calculate the iterates for each fixed-point iteration with x0 = 2. In this case there are two roots
which we know exactly since f is quadratic. The are x∗ = (1±

√
5)/2. We see that g1 does not converge;

g2,3,4 all converge to the positive root, x∗ = 1.618034 . . ., but g4 is much faster.

Qs: When does a scheme converge ? What determines the speed of convergence ?

3.2.2 Conditions for convergence

Fixed-Point Theorem (FPT): If g(x) ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] there exists at least
one fixed point x∗ ∈ [a, b] such that g(x∗) = x∗.

Suppose, further, that g(x) is differentiable on (a, b) and ∃ k < 1 such that

|g′(x)| ≤ k ∀x ∈ (a, b).

Then the fixed point is unique and, for any x0 ∈ [a, b], the sequence xn+1 = g(xn), n = 0, 1, 2, . . .
converges to the fixed point.

20



n xn from g1(x) xn from g2(x) xn from g3(x) xn from g4(x)

0 2 2 2 2

1 3 1.500000 1.732051 1.666667

2 8 1.666667 1.652892 1.619048

3 63 1.600000 1.628770 1.618034

4 3968 1.625000 1.621348 1.618034

5 15745023 1.615385 1.619058

6 1.619048 1.618350

7 1.617647 1.618132

8 1.618182 1.618064

9 1.617978 1.618043

10 1.618056 1.618037

11 1.618026 1.618035

12 1.618037 1.618034

13 1.618033 1.618034

14 1.618034

15 1.618034

Proof: (i) Existence of fixed point: If g(a) = a or g(b) = b then we are done. Assume otherwise so that

g(a)− a > 0 and g(b)− b < 0

since it is now assumed that g(x) ∈ (a, b) if x ∈ [a, b]. It then follows from the intermediate value
theorem that ∃x∗ ∈ (a, b) such that g(x∗)− x∗ = 0.

(ii) Uniqueness of fixed point: Assume that ∃ two fixed points x∗1, x
∗
2 ∈ [a, b] such that g(x∗1) = x∗1,

g(x∗2) = x∗2 and x∗2 > x∗1 (w.l.o.g). Then

g(x∗2)− g(x∗1)

x∗2 − x∗1
=

x∗2 − x∗1
x∗2 − x∗1

= 1.

Using the mean-value theorem ∣∣∣∣g(x∗2)− g(x∗1)

x∗2 − x∗1

∣∣∣∣ = |g′(ξ)| ≤ k < 1

for some ξ ∈ (x∗1, x
∗
2) which is a contradiction.

(iii) Convergence of the iteration: We use the mean-value theorem to obtain

|xn − x∗| = |g(xn−1)− g(x∗)| = |g′(ξn)| |xn−1 − x∗| ≤ k |xn−1 − x∗|

where ξn lies between xn−1 and x∗. Using this relation iteratively we obtain

|xn − x∗| ≤ k |xn−1 − x∗| ≤ k2 |xn−2 − x∗| ≤ . . . ≤ kn |x0 − x∗|.

Taking the limit n → ∞ then yields

lim
n→∞

|xn − x∗| ≤ lim
n→∞

kn |x0 − x∗| = 0.

Note: If xn is sufficiently close to x∗ and if we define the error at the nth step by en = xn − x∗, it
follows that

xn − x∗ = g(xn−1)− g(x∗) = g′(ξn) (xn−1 − x∗) ≈ g′(x∗) (xn−1 − x∗)

where ξn ∈ (xn−1, x
∗). I.e. en ≈ g′(x∗)en−1. Hence:

21



(i) The size of g′(x∗) controls the speed of convergence;

(ii) The iteration will not converge to x∗ if |g′(x∗)| > 1.

Example: In Example 3.2.1 with x∗ = 1.618034 we find:

g′1(x
∗) ≈ 3.24 > 1, (does not converge);

g′2(x
∗) ≈ −0.382, (converges);

g′3(x
∗) ≈ 0.309, (converges slighter faster than g2);

g′4(x
∗) = 0, (calculation above needs modifying...)

3.2.3 Order of convergence

Defn: Let {x0, x1, . . .} be a sequence that converges to x∗, meaning limn→∞ xn = x∗. If positive
constants α and λ exist such that

(5) lim
n→∞

|xn+1 − x∗|
|xn − x∗|α

= λ

then the sequence converges to x∗ with order of convergence α and asymptotic error constant λ.

Remark: In particular, we distinguish the following important cases (with en = xn − x∗):

• If α = 1 (and if λ < 1) the sequence is linearly convergent (|en+1| ≈ λ|en| if n is large);

• If α = 2 the sequence is quadratically convergent (|en+1| ≈ λ|en|2 if n is large);

• If α = 3 the sequence is cubically convergent (en+1| ≈ λ|en|3 if n is large).

Theorem: If the fixed-point iteration xn+1 = g(xn) converges to x∗ ∈ [a, b] and g satisfies g ∈ Cp[a, b]
and

0 = g′(x∗) = g′′(x∗) = . . . = g(p−1)(x∗), g(p)(x∗) ̸= 0

(i.e. the first p − 1 derivatives vanish at x = x∗) then the order of convergence is p and the
asymptotic error constant is

λ =
|g(p)(x∗)|

p!
.

Proof: We use Taylor’s theorem (1st year analysis), together with xn+1 = g(xn) and x∗ = g(x∗), to
obtain

xn+1 − x∗ = g(xn)− g(x∗)

=

p−1∑
k=0

g(k)(x∗)

k!
(xn − x∗)k +

g(p)(ξ(xn))

p!
(xn − x∗)p − g(x∗)

=

p−1∑
k=1

g(k)(x∗)

k!
(xn − x∗)k +

g(p)(ξ(xn))

p!
(xn − x∗)p

where ξ(xn) ∈ (xn, x
∗). The first term on the right-hand side of the last line vanishes due to the

assumption of the theorem and we obtain

lim
n→∞

|xn+1 − x∗|
|xn − x∗|p

= lim
n→∞

|g(p)(ξ(xn))|
p!

=
|g(p)(x∗)|

p!

22



and comparison with (5) completes the proof.

Example: In our previous Example 3.2.1, f(x) = x2 − x − 1 = 0 with a root x∗ = (1 +
√
5)/2 we

showed that

g4(x) = x− x2 − x− 1

2x− 1

is s.t. g′4(x
∗) = 0. One can further check that g′′4(x

∗) ̸= 0, and hence we conclude from the last theorem
that the convergence is quadratic.

3.2.4 Example

Consider the fixed-point iteration for g(x) = sin(πx/2). I.e. we iterate xn+1 = sin(πxn/2) with x0 = 1.5
and there are 3 fixed points: x∗ = −1, 0, 1 (easy to see graphically by drawing y = x and y = sin(πx/2)
and noting 3 intersections).

We note that g′(1) = 0 and g′′(1) = −π2/4, so order of convergence is 2 (quadratic) and asymptotic
error constant is π2/8 ≈ 1.233. This is confirmed by numerical results:

n xn en = xn − 1 |en|/|en−1|2

0 1.500000000 0.5

1 0.707106769 −0.292893231 1.1715

2 0.896018863 −0.103981137 1.2120

3 0.986690760 −0.013309240 1.2309

4 0.999781489 −0.000218510 1.2335

5 0.999999940 −0.000000059 1.2483

Remark: The scheme cannot be used with a different x0 to converge to the fixed point x∗ = 0 since
g′(0) = π/2 > 1. Using x0 < 1, the scheme converges to x∗ = −1.

3.3 Newton-Raphson method

The Newton-Raphson method5, or simply Newton’s method, is one of the most powerful and
well-known methods for solving a root-finding problem of the form f(x) = 0.

Let x∗ be a solution of f(x) = 0 and let xn be a close approximation such that |xn − x∗| is small. We
assume f ∈ C2[a, b] and x∗, xn ∈ [a, b] and use Taylor’s theorem to obtain

f(x∗) = f(xn) + f ′(xn)(x
∗ − xn) +

1

2
f ′′(ξ(xn))(x

∗ − xn)
2

where ξ(xn) lies between x∗ and xn.

Now if |xn − x∗| ≪ 1 then |xn − x∗|2 ≪ |xn − x∗| justifying the approximation

0 ≈ f(xn) + f ′(xn)(x
∗ − xn).

Solving this equation for x∗ results in

x∗ ≈ xn − f(xn)

f ′(xn)
.

5developed in the 17th century by Isaac Newton (1641-1727) and Joseph Raphson (1648-1715)

23



This approximation suggests we define the RHS as a new approximation to x∗, leading to Newton’s
method:

xn+1 = xn − f(xn)

f ′(xn)
.

It corresponds to a fixed-point iteration of the form xn+1 = g(xn) under the definition

(6) g(x) = x− f(x)

f ′(x)
.

Remark: Newton’s method can also be derived/motivated by graphical considerations.

3.3.1 Order of convergence of Newton’s method

We know from a theorem in the last section that the order of convergence of a fixed-point iteration
scheme is determined by how many of the first derivatives of the function g(x) vanish at the fixed point
x∗. For Newton’s method we calculate from (6) that

(7) g′(x) = 1− f ′2 − ff ′′

f ′2 =
ff ′′

f ′2 , g′′(x) =
f ′2(f ′f ′′ + ff ′′′)− ff ′′(2f ′f ′′)

f ′4 .

If we assume that x∗ is a simple zero of f(x), meaning that f(x∗) = 0 and f ′(x∗) ̸= 0 then

g′(x∗) =
f(x∗)f ′′(x∗)

[f ′(x∗)]2
= 0

whilst

g′′(x∗) =
f ′(x∗)3f ′′(x∗)

f ′(x∗)4
=

f ′′(x∗)

f ′(x∗)
.

The second derivative g′′(x∗) is (in general) not zero and so of Newton’s method is typically of quadratic
order (for simple zeros). This is considered fast: g4(x) earlier was an example of the application of
Newton’s method to the function f(x) = x2 − x− 1.

We now ask how robust the method is. In particular, how does the choice of x0 affects the success of
the method.

3.3.2 Region of convergence of Newton’s method

Theorem: Let x∗ be the fixed point of g(x) with g′(x∗) = 0 whilst we assume |g′′(x)| < M on an open
interval, I, containing x∗. Then ∃ δ > 0 s.t. for all x0 ∈ [x∗ − δ, x∗ + δ] ⊂ I the sequence xn+1 = g(xn)
converges at least quadratically to x∗. Furthermore, for n sufficiently large,

|xn+1 − x∗| < M

2
|xn − x∗|2.

Proof: Choose k ∈ (0, 1) and δ > 0 s.t. for x ∈ [x∗ − δ, x∗ + δ] ⊂ I, |g′(x)| ≤ k (this is possible since
g′(x∗) = 0 and g′(x) is assumed continuous). Since k < 1, g(x) ∈ [x∗ − δ, x∗ + δ]. I.e. the conditions of
the FPT are met and hence the method converges for x0 ∈ [x∗ − δ, x∗ + δ].

We found previously using Taylor’s theorem that when g(x∗) = 0,

|xn+1 − x∗| = 1

2
|g′′(ξn)| |xn − x∗|2

where ξn lies between xn and x∗. Using the bound for the second derivative we obtain

|en+1| =
1

2
|g′′(ξn)| |e2n| <

M

2
|en|2.

Provided |en| < 2/M , |en+1| < |en| and and hence quadratic convergence is guaranteed.

24



3.3.3 Non-simple zeros

Defn: A solution x∗ of f(x) = 0 is said to be a zero of multiplicity m if

0 = f(x∗) = f ′(x∗) = . . . = f (m−1)(x∗), f (m)(x∗) ̸= 0.

Zeros with m = 1 (the usual case, where f ′(x∗) ̸= 0) are called simple zeros.

We consider now how zeros of multiplicity m > 1 (non-simple zeros) affect the convergence of Newton’s
method. By Taylor’s theorem,

(8) f(x) =

m−1∑
k=0

f (k)(x∗)

k!
(x− x∗)k +

f (m)(ξ(x))

m!
(x− x∗)m ≡ q(x) (x− x∗)m

since all the terms in the sum now vanish and where ξ(x) ∈ (x, x∗) and q(x) = f (m)(ξ(x))/m!. such
that q(x∗) ̸= 0.

It follows that the derivatives of f(x) are given by

f ′(x) = mq(x)(x− x∗)m−1 + q′(x)(x− x∗)m,

f ′′(x) = m(m− 1)q(x)(x− x∗)m−2 + 2mq′(x)(x− x∗)m−1 + q′′(x)(x− x∗)m.

Using (7) for m > 1 we have, with the expressions above for f , f ′ and f ′′ and taking the limits

g′(x∗) = lim
x→x∗

f(x)f ′′(x)

[f ′(x)]2
=

m(m− 1)

m2
= 1− 1

m
̸= 0.

That is, if m > 1, and the root is non-simple, then Newton’s method converges only linearly.

3.3.4 Example

Consider f(x) = ex − x− 1, which is zero at x∗ = 0. We also note that

f ′(x) = ex − 1 = 0, f ′′(x) = ex ̸= 0, at x∗ = 0

so x∗ = 0 is zero of multiplicity two (m = 2). The table below shows how Newton’s method converges
only linearly for this function.

n xn |en|/|en−1|
0 1.00000000

1 0.581976771 0.581976771

2 0.319055110 0.548226535

3 0.167996019 0.526542306

4 0.086348965 0.513994098

5 0.043796084 0.507198691

6 0.022057412 0.503639042

3.3.5 Reinstating lost quadratic convergence

In the case a root x∗ of f(x) is not simple resulting in linear convergence of Newton’s Method, quadratic
convergence can be restored by applying Newton’s method to

F (x) = f(x)/f ′(x)

25



which implies the following iteration scheme

(9) xn+1 = xn − F (xn)

F ′(xn)
, where F ′ =

f ′2 − ff ′′

f ′2

and so

(10) xn+1 = xn − f(xn)f
′(xn)

f ′(xn)f ′(xn)− f(xn)f ′′(xn)

in terms of the original function.

Proof: If f(x) has a zero of multiplicity m at x = x∗ then f(x) = q(x)(x− x∗)m with q(x∗) ̸= 0, from
(8). It follows that

F (x) =
q(x)(x− x∗)m

mq(x)(x− x∗)m−1 + q′(x)(x− x∗)m
= Q(x)(x− x∗)

where

Q(x) =
q(x)

mq(x) + q′(x) (x− x∗)
→ 1

m
̸= 0 as x → x∗.

Thus F (x) has a simple zero at x = x∗, the same as the zero of f(x), and (9) therefore has quadratic
convergence.

Remark: Since f(xn) and f ′(xn) are very small as xn → x∗, (10) is a scheme in which the product of
small numbers are divided by small numbers and this is susceptible to rounding errors.

3.4 Aitken’s method

Aitken’s method (or the ∆2-method) can be used to accelerate the convergence of any linearly convergent
sequence, regardless of its origin.

Suppose that {x0, x1, . . .} is a linearly convergent sequence with limit x∗ and asymptotic error constant
λ < 1. Then

lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= λ < 1.

We therefore expect that
|xn+1 − x∗|
|xn − x∗|

≈ λ

for sufficiently large n. The approximation would therefore also hold when n is replaced by n+ 1, and
so, dropping the modulus (with a certain amount of care), we claim that

xn+1 − x∗

xn − x∗
≈ ±λ ≈ xn+2 − x∗

xn+1 − x∗
.

Multiplying across by the denominators gives

(xn+1 − x∗)2 ≈ (xn+2 − x∗) (xn − x∗)

=⇒ x2n+1 − 2xn+1x
∗ + (x∗)2 ≈ xn+2xn − x∗(xn+2 + xn) + (x∗)2

and solving for x∗ results in

(11) x∗ ≈
xn+2xn − x2n+1

xn+2 − 2xn+1 + xn
= xn −

x2n+1 − 2xn+1xn + x2n
xn+2 − 2xn+1 + xn

= xn − (xn+1 − xn)
2

xn+2 − 2xn+1 + xn
.

26



This can be written more compactly using the notation of a forward difference operator

∆xn = xn+1 − xn

since then we have

∆2xn = ∆(∆xn) = ∆(xn+1 − xn) = ∆xn+1 −∆xn = xn+2 − 2xn+1 + xn

and (11) becomes

x∗ ≈ xn − (∆xn)
2

∆2xn
.

Thus, we denote a new sequence {x̂n} by defining

x̂n ≈ xn − (∆xn)
2

∆2xn

whose convergence can be shown to be faster than linear (see, for example, Burden & Faires).

3.4.1 Example

Use Aitken’s ∆2-method to improve the convergence to x∗ = 0 of the linearly convergent sequence
xn for Newton’s method applied to f(x) = ex − x − 1. The final column shows that x̂n converges
quadratically to zero compared to the original sequence. Note the onset of some round-off errors which
are due dividing small numbers (∆xn)

2 by small numbers ∆2xn (also later in Section 5).

n xn x̂n |x̂n|/|xn+2|2

0 1.00000000 −0.126638770 1.2440

1 0.58197677 −0.035993993 1.2753

2 0.31905511 −0.009689718 1.2995

3 0.16799601 −0.002521470 1.3145

4 0.08634896 −0.000646777 1.3293

5 0.04379608 −0.000167448 1.3669

6 0.02205741

7 0.01106787

3.5 Solving systems of nonlinear equations: Multi-dimensional Newton’s method

We consider now methods for solving systems of n nonlinear equations for n variables which we express
as

(12) fi(x1, x2, . . . , xn) = 0 for i = 1, . . . , n

or, in vector notation,

f(x) = 0, f = (f1, f2, . . . , fn)
T, x = (x1, x2, . . . , xn)

T.

This is generally a difficult problem and, unlike linear systems of equations, and there are no good
general methods systems of nonlinear equations.

To understand this complexity consider the case in (n = 2) two dimensions where (12) can be expressed
(f1 = f , f2 = g, x1 = x, x2 = y) as

f(x, y) = 0 and g(x, y) = 0.

27



Both equations define curves in the xy-plane and the simulateous solution of both equations lie at the
intersections of these curves. Thus, the simplicity in one dimension of a line crossing the axis is lost.
The complexity of the picture described above increases further for n > 2.

However, once the neighbourhood of a root is located, there are methods of converging to the root.
Newton’s method is the most widely used of these6

Let the solution of (12) be given by x∗, such that f(x∗) = 0. Assume that x(m) is a good approximation
to the solution such that |x(m) − x∗| is small. Then we use Taylor’s expansion in n > 1 dimensions7

fi(x
∗) = fi(x

(m)) +
n∑

j=1

∂fi
∂xj

(x(m))(x∗j − x
(m)
j ) +

1

2

n∑
j=1

n∑
k=1

∂2fi
∂xj∂xk

(x∗j − x
(m)
j )(x∗k − x

(m)
k ) + h.o.t

(higher order terms) for i = 1, 2, . . . , n. The double sum includes products of terms assumed to be
sufficiently small that they can be neglected.

What remains can be expressed in matrix/vector notation as

f(x∗) ≈ f(x(m)) + J(x(m))(x∗ − x(m))

where J(x) is the Jacobian matrix,

J(x) =


∂f1
∂x1

(x) . . .
∂f1
∂xn

(x)

...
...

∂fn
∂x1

(x) . . .
∂fn
∂xn

(x)

 .

Since f(x∗) = 0 we have
x∗ ≈ x(m) − J−1(x(m))f(x(m)).

This suggests the following iteration scheme (multi-dimensional Newton’s method)

x(m+1) = x(m) − J−1(x(m))f(x(m)) m = 0, 1, 2, . . .

subject to a sufficiently good initial guess x(0).

Note that we can avoid evaluating the inverse matrix J−1 by setting

x(m+1) = x(m) − y(m)

where y(m) can be determined as the solution of

J(x(m))y(m) = f(x(m))

using, for e.g., Gaussian elimination.

Remarks: As in one dimension, Newton’s method has, in general, quadratic convergence (no proof),
but there are two disadvantages of the method:

(i) The method may not converge if the initial approximation is not good enough;

(ii) The Jacobian matrix of partial derivatives, J , must be evaluated at each step. Evaluating the
Jacobian of f(x) may be difficult analytically, numerical expensive or impossible (if f(x) is not
explicit).

6One can also generalise fixed-point methods to higher dimensions.
7(Multivariable Calculus course)

28



3.5.1 Example

Consider
x2 + y2 = 4, xy = 1.

First, write f1(x, y) = x2 + y2 − 4 and f2(x, y) = xy − 1 so that system of equations is represented by
f1 = 0, f2 = 0.

Note that the curves of f1 = 0 and f2 are represented by a circle of radius 2 and hyperbolae passing
through (1, 1) and (−1,−1). In this way, we can see there are four roots placed symmetrically about
the x- and y-axes.

We can find these roots exactly by eliminating between the two equations. Substituting y = 1/x into
the first equation gives

x4 − 4x2 + 1 = 0

which is a quadratic for x2 and so

x2 = (4±
√
16− 4)/2 = 2±

√
3

meaning that

x∗ = ±
√
2±

√
3 = ±1.9319, ±0.5176

and then y∗ = ±0.5176, ±1.9319 are the four roots.

Now let’s use Newton’s method. We need

J =

[
2x 2y
y x

]
→ J−1 =

1

2x2 − 2y2

[
x −2y
−y 2x

]
.

Note: this fails when det{J} = 0 and this happens when x = ±y. The vanishing of the determinant
of the Jacobian indicates that x lies on a critical point and is the multi-dimensional equivalent to the
vanishing of f ′(x), which results in the failure of the one-dimensional Newton’s method.

Choose, for example, x(0) = (2, 0)T which is close to one (+/+) of the four roots. Then Newton’s
method gives us

x(1) =

(
2
0

)
− 1

8

[
2 0
0 4

](
0
−1

)
the last vector being f evaluated at x(0). Then we find

x(1) =

(
2
0.5

)
, x(2) =

(
1.9333
0.5167

)
, x(3) =

(
1.9319
0.5176

)
and we have converged to 4 significant figures after 3 iterations !

3.6 The steepest descent method (the gradient method)

THIS SECTION IS OMITTED FROM THE COURSE IN 2025

This is a so-called global method that does not necessarily require a good initial approximation, but the
convergence can be quite slow. The idea is to transform the root finding problem into a minimisation
problem. Consider

(13) g(x) =
n∑

i=1

f2
i (x) ≥ 0.

The function g(x) has a minimum at x∗ with value g(x∗) = 0 if and only if f(x∗) = 0.

29



The method is described by the iterative step

(14) x(m+1) = x(m) − αm∇g(x(m)), m ≥ 0

for a given initial guess x(0) where

−∇g =

(
− ∂g

∂x1
, . . . ,− ∂g

∂xn

)T

is minus the gradient of g and points in the direction of steepest descent8

In (14), αm determines how far we move from the position x(m) along the straight path in the direction
of steepest descent. This is determined by requiring the value of g on that path is minimised. In other
words we should only move in the direction −∇g for as long as we are descending.

I.e. α = αm is determined from

(15) 0 =
dh

dα

where
h(α) = g[x(m) − α∇g(x(m))].

Determining solutions of (15) are often complicated and crude methods are often sufficient as one need
not be precise about the value of αm to make the method work. For e.g. on might calculate h(α) for a
few values of α and use the last value before h(α) starts to increase.

Remark: The method always converges to a minimum. This may be the global minimum where
g(x) = 0, or it may be a local minimum where g(x) ̸= 0. That is, it is possible for the method to fail
to find the root x∗ if convergence is not to the global miniumum.

3.6.1 Example

Apply the steepest descent method to the system of two equations

x21 + x22 − 4 = 0, x1x2 − 1 = 0

with an initial guess x(0) = (2, 0) (the same example as Section 3.5.1).

Using (13) we define
g(x1, x2) = f2

1 + f2
2 = (x21 + x22 − 4)2 + (x1x2 − 1)2

so that g is minimised to zero at the solution. Now

∇g =

(
4x1(x

2
1 + x22 − 4) + 2x2(x1x2 − 1)

4x2(x
2
1 + x22 − 4) + 2x1(x1x2 − 1)

)
.

So, the first iteration is

x(1) = x(0) − α0∇g(x(0)) =

(
2
0

)
+ α0

(
0
4

)
after substitution of x(0) = (2, 0). In order to find α0 we consider

h(α) = g[(2, 4α)T ] = (16α2)2 + (8α− 1)2 = 256α4 + 64α2 − 16α+ 1.

8(Multivariable Calculus) E.g.: if x = (x, y) then g(x, y) can be interpreted as the height of a three-dimensional surface
and, for any point (x, y), −∇g points in the horizontal (compass) direction in which you will descend most rapidly. It is
perpendicular to the contours of the surface on a map.

30



To find the minimum, set
0 = h′(α) = 4× 256α3 + 2× 64α− 16

or
0 = 64α3 + 8α− 1

and we can determine numerically that is has a root α0 ≈ 0.1133. Hence

x(1) ≈
(

2
0.4532

)
as our first iteration towards the root. The next step is the same as above, but using x(1) instead of
x(0). This is now a numerical process, not something that is feasible by hand. For completeness we find

x(2) ≈
(

1.946
0.501

)
.

Recall the exact root was x∗ = (1.9319, 0.5176)T .

Remark: Convergence is slow. Why ? gradients of g are zero at the solution, x∗, which is when 1D
Newton’s method became linearly convergent.

31



4 Interpolation: approximation of curves by polynomials

A continuous function is an abstract idea and a computer only records information about a function
f(x) at discrete points x = xi, i = 0, . . . , n (say). Interpolation addresses the fact that we often need
to know about f(x) at values x ̸= xi. Interpolation addresses how to join data points on a graph with
a smooth curve.

4.1 Polynomial approximation

If there are n + 1 points (xi, f(xi)) then we imagine we can fit a polynomial of degree n through the
points.9 I.e. we represent f(x) by

Pn(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0.

And then determine ai by setting Pn(xi) = f(xi) at x = xi. I.e.

anx
n
i + an−1x

n−1
i + . . .+ a1xi + a0 = f(xi)

for i = 0, 1, . . . , n. I.e. we have n+ 1 equations for n+ 1 unknowns. We can write this as
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1

1 xn x2n · · · xnn




a0
a1

an

 =


f(x0)
f(x1)

f(xn)

 .

This matrix is a special type called a Vandermonde matrix. Suddenly this seems like a difficult
task... but

4.2 Lagrange interpolating polynomials

Consider first n = 1 (motivation). Define

L1,0(x) =
x− x1
x0 − x1

, L1,1(x) =
x− x0
x1 − x0

,

s.t. L1,0(x0) = 1, L1,0(x1) = 0 and similarly for the other function. Then

(16) P1(x) = L1,0(x)f(x0) + L1,1(x)f(x1)

is indeed a degree 1 polynomial which passes through (x0, f(x0)) and (x1, f(x1)).

Now consider

Ln,k(x) =

n∏
i=0
i ̸=k

(x− xi)

(xk − xi)

is a polynomial of degree n s.t.

Ln,k(xj) =

{
0, if j ̸= k
1, if j = k

}
= δjk

(the Kronecker delta.) Then

(17) Pn(x) =

n∑
k=0

Ln,k(x)f(xk) ≡
n∑

k=0

f(xk)

n∏
i=0
i ̸=k

(x− xi)

(xk − xi)

9This is not the only way of curve fitting: see Burden and Faires

32



is a polynomial of degree n s.t.

Pn(xj) =
n∑

k=0

Ln,k(xj)f(xk) =
n∑

k=0

δjkf(xk) = f(xj)

for j = 0, 1, . . .. I.e. we have determined the interpolating polynomial without solving a matrix equa-
tion.10

4.2.1 Error

Q: How good is Pn(x) for x ̸= xk ?

Theorem: Let f ∈ Cn+1[a, b] (f has n+ 1 cts derivatives) and x0, . . . , xn ∈ [a, b]. Then

(18) f(x) = Pn(x) +
f (n+1)(ξ(x))

(n+ 1)!

n∏
i=0

(x− xi)

for some ξ(x) ∈ [x0, xn] ⊂ [a, b] (ξ is generally unknown).

A: The final term in (18) represents the error in the approximation.

Proof: We first note that (18) is true if x = xk, k = 0, 1, . . . , n. So consider x ̸= xk and define g by

g(t) = f(t)− Pn(t)− (f(x)− Pn(x))
n∏

i=0

(t− xi)

(x− xi)
.

Note that since Pn is a polynomial and f ∈ Cn+1[a, b], then g ∈ Cn+1[a, b] also. First, note that when
t = xk,

g(xk) = 0− (f(x)− Pn(x))× 0 = 0

for k = 0, 1, . . . , n. Second, note that when t = x

g(x) = (f(x)− Pn(x))(1− 1) = 0.

Therefore g(t) is zero at x, x0, x1, . . . , xn, i.e. at n+2 distinct points. By the generalised Rolle’s theorem,
∃ ξ ∈ (a, b) s.t.

0 = g(n+1)(ξ) = f (n+1)(ξ)− P (n+1)
n (ξ)− (f(x)− Pn(x))

d(n+1)

dt(n+1)

n∏
i=0

(t− xi)

(x− xi)

∣∣∣∣∣
t=ξ

.

First, since Pn(x) is a polynomial of degree n, its (n+1)th derivative is zero. Also, the final product is
a polynomial in t of degree n+ 1 and its leading term is t(n+1). So its (n+ 1)th derivative is

n∏
i=0

(n+ 1)!

(x− xi)
.

We can now rearrange what is left to give (18).

10There are other ways of doing this: see divided differences in Burden and Faires

33



4.2.2 Example

Consider fitting a polynomial of degree n to the curve f(x) = 1/x at xi = 1 + i/n, i = 0, . . . , n (that is
at equally spaced points between x = 1 and x = 2):

(i) Find P2(x); (ii) determine a bound on the maximum error E = max1≤x≤2{|f(x) − P2(x)|}; (iii)
determine the actual maximum error, E.

(i) From the definition of the Lagrange interpolating polynomial

P2(x) = f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ f(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

and with x0 = 1, x1 = 3/2, x2 = 2 we have

P2(x) = 1
(x− 3/2)(x− 2)

(1− 3/2)(1− 2)
+

2

3

(x− 1)(x− 2)

(3/2− 1)(3/2− 2)
+

1

2

(x− 1)(x− 3/2)

(2− 1)(2− 3/2)
.

We just need to tidy this up:

P2(x) =
13

6
− 3

2
x+

1

3
x2.

(ii)

E = max
1≤x≤2

{|f(x)− Pn(x)|} ≤ max
1≤x≤2

{|f (n+1)(x)|} 1

(n+ 1)!
max
1≤x≤2

∣∣∣∣∣
n∏

i=0

(x− xi)

∣∣∣∣∣ .
So first we need f ′(x) = −1/x2, f ′′(x) = 2/x3 and so on. We can see that f (n+1)(x) = (n +
1)!(−1)n/xn+2. Its maximum is when x = 1 and so now

E ≤ max
1≤x≤2

{|W (x)|}, where W (x) =
n∏

i=0

(x− xi).

To determine the maximum we differentiate (as usual).

For the case given: n = 2, x0 = 1, x1 = 3/2, x2 = 2 and

W (x) = (x− 1)(x− 3/2)(x− 2) = x3 − 9

2
x2 +

13

2
x− 3

so

W ′(x) = 3x2 − 9x+
13

2
.

We solve W ′(x) = 0 to give x = 3/2±
√
3/6 and both lie in [1, 2]. Now W (3/2±

√
3/6) = ∓

√
3/36,

E ≤
√
3/36 = 0.04811 . . .

(iii) Note, in (ii) this was the bound on the error, because we didn’t know ξ. The actual maximum error
is

E = max
1≤x≤2

{∣∣∣∣1x −
(
13

6
− 3x

2
+

x2

3

)∣∣∣∣} .

This requires us to solve
−1

x2
− 2

3
x+

3

2
= 0

which is a cubic (and so I find the answer numerically11: x ≈ 1.1890 and x ≈ 1.7726 are both roots in
1 ≤ x ≤ 2.) This gives

E = max{0.01336, 0.009006} = 0.01336.

34



 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.5  1  1.5  2  2.5

Figure 1: Plot of 1/x and P2(x)

This is (thankfully) less than the bound on the error !

Remark: The method of interpolation can suffer from instabilties (not due to rounding errors). That
is, as n increases and we add more interpolation points we want the resulting nth degree polynomial to
fit the data better, but this doesn’t always happen (see Burden & Faires). One practical method is to
fit a lower degree polynomial to the data.

11How ? In Section 3

35



5 Differentiation

This section refers to the numerical approximation to the derivative of a function f(x), say. This is
required if f is not known explicitly and is known or can only be calculated at discrete points. The
approximation of derivatives is also essential in the numerical solution of differential equations (later in
the course).

Our starting point is the definition of the derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

and motivates what comes next. An equivalent approach would have been to use interpolating poly-
nomials to approximate derivatives and results in the same approximations with x1 = x0 ± h and
x2 = x0 ∓ h.

5.1 Difference formulae

Defn: (i) The forward difference approximation at x = x0 is

f ′(x0) ≈
f(x0 + h)− f(x0)

h

for h > 0 (h will be used throughout the remainder of the course, always as a positive step size).

(ii) The backward difference approximation is defined as

f ′(x0) ≈
f(x0)− f(x0 − h)

h
.

Q: We expect that as h → 0 the approximations improve. How ?

A: Assume that f ∈ C2[a, b], x0, x0 + h ∈ [a, b] and h > 0. Then from Taylor’s theorem

f(x0 + h) = f(x0) + h f ′(x0) +
h2

2
f ′′(ξ)

for some ξ ∈ (x0, x0 + h). The last term is a remainder term and collects together all the terms in the
Taylor series approximation.

Solving this equation for f ′(x0) results in

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ).

and so the error associated with the forward difference approximation is

E ≡ E(h) = −h

2
f ′′(ξ) = O(h)

and we say that the error is of order h. Note that ξ depends on h also.

Remark: We refer to E as the truncation error because it arises from the truncation of the Taylor
series expansion.

Exercise: Find the truncation error in the backward difference approximation and show it is also O(h).

Defn: Since E = O(h) we say that the forward/backward difference approximation are are first-order
schemes.

36



5.1.1 Central differences

If we use more than two evaluations of f we should get better approximations.

Defn: A three-point central difference approximation for f ′(x0) is assumed of the form

f ′(x0) ≈ αf(x0 + h) + βf(x0) + γf(x0 − h).

The aim now is to determine α, β, γ to minimise the error (as a function of h) between the exact value
of the derivative and its approximation:

E(h) = f ′(x0)− [αf(x0 + h) + βf(x0) + γf(x0 − h)] .

We assume f ∈ C3[a, b], x0, x0 ± h ∈ [a, b], and h > 0 and apply Taylor’s theorem

E(h) = f ′(x0)− α

[
f(x0) + hf ′(x0) +

h2

2
f ′′(x0) +

h3

6
f ′′′(ξ1)

]
−βf(x0)− γ

[
f(x0)− hf ′(x0) +

h2

2
f ′′(x0)−

h3

6
f ′′′(ξ2)

]
(19)

and ξ1 ∈ (x0, x0+h), ξ2 ∈ (x0−h, x0). There’s some skill/luck in deciding where to truncate the Taylor
series. You only know if you’ve done it right when you get to the end of the calculation.

Now we have

E(h) = f(x0)(α+ β + γ) + f ′(x0)(1− hα+ hγ)− h2

2
f ′′(x0)(α+ γ)− h3

6
[αf ′′′(ξ1)− γf ′′′(ξ2)].

We set the coefficients of f(x0), f
′(x0) and f ′′(x0) to zero to give three equations for our three unknowns

α+ β + γ = 0, h(α− γ) = 1, α+ γ = 0

whose solution is

α =
1

2h
, β = 0, γ = − 1

2h
.

Thus we have found that

(20) f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
+ E(h)

where the truncation error is

E(h) = −h2

12
[f ′′′(ξ1) + f ′′′(ξ2)].

Using the intermediate value theorem12 (IVT) we can conclude that there is a point ξ ∈ [ξ2, ξ1] that
takes the value

f ′′′(ξ) =
1

2
[f ′′′(ξ1) + f ′′′(ξ2)]

and thus ξ ∈ (x0 − h, x0 + h).

Therefore we find that the error of the approximation is

E(h) = −h2

6
f ′′′(ξ) = O(h2),

and the approximation (20) is thus said to be a second-order scheme.

Remark: (20) is called the central-difference approximation to the first derivative and in spite of
allowing ourselves three points to evaluate f(x), the scheme only requires two.

12That is, if f ′′′(x) is continuous and takes the values of f ′′′(ξ1) and f ′′′(ξ2) at x = ξ1,2 then it must pass through the
averages of the two values for some ξ between ξ1 and ξ2.

37



5.1.2 Second derivatives

Defn: The three-point central difference approximation for f ′′(x0) follows in a similar way.
Note that we certainly need at least three evaluations of f to determine curvature. We write

f ′′(x0) ≈ αf(x0 + h) + βf(x0) + γf(x0 − h).

Then the error is
E = f ′′(x0)− [αf(x0 + h) + βf(x0) + γf(x0 − h)]

and we aim to choose α, β, γ to minimise E as a function of h.

Assuming f ∈ C4[a, b], x0, x0 ± h ∈ [a, b], and h > 0: we now have to include one more term in the
Taylor expansion (for reasons that become clear)

E(h) = f ′′(x0)− α

[
f(x0) + hf ′(x0) +

h2

2
f ′′(x0) +

h3

6
f ′′′(x0) +

h4

24
f (iv)(ξ1)

]
−βf(x0)− γ

[
f(x0)− hf ′(x0) +

h2

2
f ′′(x0)−

h3

6
f ′′′(x0) +

h4

24
f (iv)(ξ2)

]
.(21)

Now we have

E(h) = f(x0)(α+ β + γ) + hf ′(x0)(α− γ) +
1

2
f ′′(x0)(1 + h2α+ h2γ)− h3

6
f ′′′(x0)(α− γ)

−h4

24
[αf (iv)(ξ1) + γf (iv)(ξ2)].

We eliminate coefficients of f(x0), f
′(x0), f

′′(x0) to give three equations for the three unknowns:

α+ β + γ = 0, α− γ = 0,
h2

2
(α+ γ) = 1.

The solution to this system of equations is given by

α =
1

h2
, β = − 2

h2
, γ =

1

h2
.

Note that the coefficient of f ′′′(x0) also vanishes in this case (this is why we went to an additional order
in the expansion) and this means that

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
+ E(h)

where

E(h) = −h2

24

[
f (iv)(ξ1) + f (iv)(ξ2)

]
= −h2

12
f (iv)(ξ) = O(h2)

with ξ ∈ (x0 − h, x0 + h) after using the intermediate value theorem (IVT) as in the previous section.
This approximation is a second-order scheme.

Remark: There are many possibilities to generalise these approximations including:

(i) Forward difference formulas (using for e.g. x0, x0 + h, x0 + 2h);

(ii) Backward difference formulas (using for e.g. x0, x0 − h, x0 − 2h);

(iii) Formulae which use more points or points distributed unevenly.

38



5.2 Round-off errors

According to the formulae we have developed, theoretical errors, E(h), can be made arbitrarily small
by choosing h sufficiently small. In practice, however, numerical calculations on a computer with finite-
precision accuracy limits the size of h because of round-off errors. This is true in all such schemes
we encounter whose accuracy is related to a step size, h, but numerical differentiation is particularly
vulnerable to rounding errors because of the nature of the calculations involved. That is, it requires
us to take differences of almost equal numbers to leave small numbers which are then divided by small
numbers (h or h2).

The issue is best illustrated by an example.

5.2.1 Example

Consider the central difference approximation to the derivative. I.e.

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− h2

6
f ′′′(ξ),

for some ξ ∈ (x0 − h, x0 + h). The final term is what we have called our truncation error, E(h).

Consider now the effect of making small errors in the calculation of the approximation. That is, assume
that the exact values are given by

f(x0 + h) = f̃(x0 + h) + e(x0 + h), f(x0 − h) = f̃(x0 − h) + e(x0 − h),

finite-precision calculations (f̂(x0 ± h)) and round-off errors (e(x0 ± h)). These round-off errors are
bounded by machine accuracy (see definition in Chapter 1):

|e(x0 ± h)| < ϵ|f(x0 ± h)|

(and ϵ ≈ 10−16 for devices with 64-bit storage).

The total error Et(h) is the sum of the round-off errors and the truncation error

Et(h) =
e(x0 + h)− e(x0 − h)

2h
− h2

6
f ′′′(ξ).

Assuming that h is small enough for f(x0 ± h) ≈ f(x0) and for f ′′′(ξ) ≈ f ′′′(x0), standard inequalities
give us

|Et(h)| ≤
∣∣∣∣e(x0 + h)

2h

∣∣∣∣+ ∣∣∣∣e(x0 − h)

2h

∣∣∣∣+ ∣∣∣∣h26 f ′′′(ξ)

∣∣∣∣ ≲ ϵ|f(x0)|
h

+
h2

6
|f ′′′(x0)|.

Miminising the total error as a function of h requires
(22)

0 =
d

dh

(
ϵf(x0)

h
+

h2

6
f ′′′(x0)

)
= −ϵ|f(x0)|

h2
+

h|f ′′′(x0)|
3

, =⇒ h = hopt =

(
3ϵ|f(x0)|
|f ′′′(x0)|

)1/3

.

This gives an estimate for the optimal choice of h which minimises the total error.

Remark: This result is not universal: it depends on the scheme being analysed.

Numerical experiment: Use central difference formula to approximate the derivative of f(x) = x9

at x = 1 with h = 10−m, m = 2, 3, . . . , 8 and deduce the error (the exact result is f ′(1) = 9 of course).

We performed this calculation on a PC with 64-bit storage: so let’s say ϵ = 10−16. We see that the
error initially decreases with h, proportional to O(h2) as predicted by the truncation error. However,

39



h Et

0.01 −0.84× 10−2

0.001 −0.84× 10−4

0.0001 −0.84× 10−6

10−5 −0.54× 10−8

10−6 0.74× 10−10

10−7 −0.25× 10−9

10−8 0.21× 10−7

for values smaller than h ≈ 10−6 we notice that the errors start increasing. We now understand this to
be the effect of round-off errors dominating the truncation error.

According to (22), we have |f(1)| = 1, |f ′′′(1)| = 9× 8× 7 = 504 and so

hopt ≈
(
3× 10−16

504

)1/3

≈ 0.84× 10−6

which agrees with the tabulated results.

Remark: The mimimum error of 10−10 in the table of approximations sounds OK, but remember that
we started with calculations accurate to 10−16 and so we’ve lost 5 decimal places accuracy in just one
calculation. And it’s even worse for second derivatives.

Q: What can be done to to reduce the error?

A: Higher-order formulae (e.g. using more points). Or...

5.3 Richardson extrapolation

Richardson extrapolation13 is a general method that is useful across many areas of Numerical Analysis.
It can be used whenever we know how the error of an approximation depends on a parameter h of the
approximation (usually h is a step size).

5.3.1 Illustration of the method

Assume that an exact quantity N is approximated by an expression N1(h) and it is known that the
error has a power series expansion in h

(23) N = N1(h) + a1h+ a2h
2 + a3h

3 + . . .

The coefficients ai, i = 1, 2, . . . are constants that may not be known analytically or even numerically.

We now halve the step size to obtain another approximation for N :

(24) N = N1

(
h

2

)
+ a1

h

2
+ a2

h2

4
+ a3

h3

8
+ . . .

13After Lewis Fry Richardson (1911) “The approximate arithmetical solution by finite differences of physical problems
including differential equations, with an application to the stresses in a masonry dam” , though he was better known as a
pioneer in the development of modern methods for weather forecasting.

40



Now we notice that the combination 2×(24)−(23) eliminates the leading order O(h) term in the error,
thus:

2N −N =

[
2N1

(
h

2

)
−N1(h)

]
− a2

2
h2 − 3a3

4
h3 + . . .

In other words we have

(25) N = N2(h) + b2h
2 + b3h

3 + . . .

where

(26) N2(h) = 2N1(h/2)−N1(h)

and b2 = −a2/2, etc (since the values of ai were unknown and unimportant, then redefining them as
bi’s is OK).

I.e. we have obtained a new approximation, N2(h), to N which is O(h2) accurate by using calculations
of N1 accurate to O(h). It’s like magic.

This process can be repeated. Consider halving h again in equation (25):

(27) N = N2

(
h

2

)
+ b2

h2

4
+ b3

h3

8
+ . . .

Now the linear combination 4×(27)−(25) eliminates the O(h2) term thus:

4N −N = 4N2

(
h

2

)
−N2(h)−

1

2
b3h

3 + . . .

In other words we have a new approximation

N = N3(h)−
1

6
b3h

3 + . . .

where

(28) N3(h) =
1

3

[
4N2

(
h

2

)
−N2(h)

]
is accurate to O(h3). Using (26) in (28) results in

N3(h) =
1

3

[
8N1

(
h

4

)
− 6N1

(
h

2

)
+N1(h)

]
in terms of the original approximation scheme N1. The advantage of this method is that one can get
much higher accuracy with relatively large values of h and therefore avoid the onset of round-off errors.

Remark: Instead of halving h at each step we can also double it as we will see in later examples.

5.3.2 Example

Consider the central difference approximation for the derivative f ′(x0)

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− h2

6
f ′′′(ξ).

Note: the value of ξ ∈ (x0 − h, x0 + h) in this formula depends on h, so this formula is not a complete
expansion in powers of h.

41



We can, however, obtain a complete expansion in h by returning to (21) and, instead of truncating the
expansion of f(x0 ± h), produce a full a Taylor series expansion. This results (check) in

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
−

∞∑
k=1

h2k

(2k + 1)!
f (2k+1)(x0).

Notice the sum is over even powers h2, h4 etc and so this relation may be expressed as

(29) N = N1(h) + a2h
2 + a4h

4 + a6h
6 + . . .

since we are attempting to approximateN = f ′(x0) with the schemeN1(h) = (f(x0+h)−f(x0−h))/(2h)
and we have no idea what all the higher derivatives of f are, hence the coefficients ai are unknown.

We halve the step size to obtain another approximation for N

(30) N = N1

(
h

2

)
+ a2

(
h

2

)2

+ a4

(
h

2

)4

+ a6

(
h

2

)6

+ . . .

The combination (4×(30)−(29))/3 gives

(31) N = N2(h) +
a4
3

(
−3

4
h4
)
+

a6
3

(
−15

16
h3
)
+ . . .

where

N2(h) =
1

3

[
4N1

(
h

2

)
−N1(h)

]
is now accurate to O(h4).

Exercise: repeat the process and halve h again in (31) to get N = N3(h) +O(h6) where

N3(h) ≡
1

15

[
16N2

(
h

2

)
−N2(h)

]
.

and hence in terms of N1 only

N3(h) =
1

45

[
64N1

(
h

4

)
− 20N1

(
h

2

)
+N1(h)

]
.

Et

h f ′(1)−N1(h) f ′(1)−N2(h) f ′(1)−N3(h)

0.01 −8.4× 10−3 3.1× 10−7 −3.9× 10−13

0.005 −2.1× 10−3 1.9× 10−8

0.0025 −5.2× 10−4

E.g.: Consider previous example f(x) = x9 with x0 = 1 and h = 0.01. We calculate N1(0.01),
N1(0.01/2) and N1(0.01/4) and this allows us to compute the total error (recall, the best we could do
without extrapolation was Et = 10−10 with hopt = 10−6; now we get Et under 10−12 with a smallest
value of h = 0.0025.

42



6 Integration

Many integrals cannot be evaluated by hand and require numerical methods. Numerical integration
methods are often referred to as quadrature. They involve evaluating continuous functions at discrete
points xi, say, and weighting their contribution by ci, say:

I =

∫ b

a
f(x) dx ≈

n∑
i=1

cif(xi).

We start with methods that replace the integrand with a Lagrange interpolating polynomial which
can be integrated explicitly.

6.1 The trapezoidal rule

Our simplest approximation to the integral I uses the linear Lagrange polynomial with x0 = a, x1 = b:

P1(x) =
(x− b)

(a− b)
f(a) +

(x− a)

(b− a)
f(b).

Recall that

f(x) = P1(x) +
f ′′(ξ(x))

2
(x− a)(x− b)

for some ξ ∈ (a, b) includes the exact error term.

Thus we obtain

I =

∫ b

a
f(x) dx =

∫ b

a
P1(x) dx+

1

2

∫ b

a
f ′′(ξ(x)) (x− a) (x− b) dx.

The integral over the polynomial can be easily evaluated and results in∫ b

a
P1(x) dx =

[
1

2

(x− b)2

(a− b)
f(a) +

1

2

(x− a)2

(b− a)
f(b)

]b
a

=
b− a

2
f(a) +

b− a

2
f(b).

For the integration of the error term we need...

Theorem: The weighted mean-value theorem for integrals. Suppose f ∈ C[a, b], g is integrable
on [a, b], and g(x) does not change sign on [a, b]. Then there exists a number c ∈ (a, b) such that∫ b

a
f(x) g(x) dx = f(c)

∫ b

a
g(x) dx.

Proof: Omitted (but a useful case is to consider g(x) = 1 where we can see how the result works
graphically).

... Now assume that f ∈ C2[a, b] and define g(x) = (x − a)(x − b), noting that g(x) does not change
sign in [a, b]. Then there exists a number ξ ∈ (a, b) such that

1

2

∫ b

a
f ′′(ξ(x)) (x− a) (x− b) dx =

1

2
f ′′(ξ)

∫ b

a
(x− a) (x− b) dx

=
1

2
f ′′(ξ)(b− a)3

∫ 1

0
t(t− 1) dt

= − 1

12
(b− a)3f ′′(ξ)

43



(1st step is a change of variable x − a = (b − a)t). Let us express the result with a = x0, b = x1 and
h = x1 − x0, where x1 > x0, ∫ x1

x0

f(x) dx =
h

2
[f(x0) + f(x1)]−

h3

12
f ′′(ξ)

where ξ ∈ (x0, x1). The name of the method arises from the fact that the area under the function f(x)
is estimated by a trapezium (the first term in the above, the second term is the error).

6.1.1 Composite trapezoidal rule

The trapezoidal rule does not, in general, give a good approximation unless h is small. The composite
trapezoidal rule divides larger intervals into smaller subintervals to which the trapezium rule is
applied.

Consider an interval [a, b] that is divided into n equal subintervals of length h = (b− a)/n and denote
the borders of the subintervals by xi = a+ ih, i = 0, 1, . . . , n.

Applying the trapezoidal rule to each subinterval gives

I =

∫ b

a
f(x) dx =

n∑
i=1

[
h

2
(f(xi−1) + f(xi))−

h3

12
f ′′(ξi)

]
where xi−1 < ξi < xi. We can use the intermediate value theorem to simplify the sum over the error
terms:

1

n

n∑
i=1

f ′′(ξi) = f ′′(ξ), n =
(b− a)

h

for some ξ ∈ (a, b). For the application of the intermediate value theorem we used the fact that the
average of the error terms must lie between the minimum and the maximum of the error terms. Thus
the final result can be written as

I =

∫ b

a
f(x) dx = Tn + En

where

Tn =
h

2
[f(x0) + 2f(x1) + 2f(x2) + . . .+ 2f(xn−1) + f(xn)]

is the composite trapezoidal rule and

En = −h2

12
(b− a) f ′′(ξ)

where ξ ∈ (a, b) is the global truncation error.

Remark 1: Although the local truncation error for each subinterval is −h3f ′′(ξi)/12, the global trun-
cation error is En = −h2(b− a)f ′′(ξ)/12 since it accumulates error from n = (b− a)/h contributions.

Remark 2: In the global error the term ξ is a function of h. One can derive a complete expansion of
the error term in powers of h similar to Section 5.3:

En = a2h
2 + a4h

4 + a6h
6 + . . .

44



6.2 Simpson’s rule

The trapezoidal rule can be improved upon by using a quadratic Lagrange polynomial to approximate
f(x), i.e.

f(x) = P2(x) +
1

3!
f (3)(ξ(x)) (x− x0) (x− x1) (x− x2).

where

P2(x) =
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)
f(x0) +

(x− x0) (x− x2)

(x1 − x0) (x1 − x2)
f(x1) +

(x− x0) (x− x1)

(x2 − x0) (x2 − x1)
f(x2).

We consider now the interval [a, b] and define x0 = a, x2 = b, and x1 = (x0 + x2)/2 (which divides the
interval into two equal parts) to specify the Lagrange polynomial. Furthermore the step size is now
h = (b− a)/2.

One can then prove the following∫ x2

x0

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (iv)(ξ)

where ξ ∈ (x0, x2). This is Simpson’s rule14.

Remark 1: The first term on the right-hand side is obtained by integrating over the Lagrange poly-
nomial P2(x); this is not difficult but lengthy. The derivation of the error term, on the other hand, is
trickier. One expects the error term of order O(h4) whereas it turns out, due to certain cancellations,
to be O(h5).

Remark 2: The error term is proportional to f (iv)(x). This means that Simpson’s rule is exact for
polynomials of degree 3 or less. In other words, even though we have approximated f(x) using a
quadratic interpolating polynomial, Simpson’s rule exactly integrates all cubics polynomials !

Remark 3: One can continue using higher degree polynomials to approximate integrals: this results
in the Newton-Cotes formulas15. This process is, however, problematic due to Runge’s phe-
nomenon16. It occurs if one uses high-degree polynomials to interpolate a function at equidistant
points since it can be shown to lead to oscillations at the edge of the interval similar to Gibb’s phe-
nomenon17 when using Fourier series.

In conclusion: increasing the degree does not always improve the accuracy. It is better to use the
trapezoidal rule or Simpson’s rule over subdivisions of intervals.

6.2.1 Composite Simpson’s rule

Similar to the composite Trapezium rule, we divide the integration range [a, b] into smaller intervals and
apply Simpson’s rule to the subintervals. Note that we need an even number of subintervals, because
Simpson’s rule involves pairs of subintervals.

Divide the interval [a, b] into n (even !) subintervals and set

h =
b− a

n
, xi = a+ ih, fi ≡ f(xi), i = 0, 1, . . . , n.

14named after Thomas Simpson (1710-1761)
15named after Isaac Newton and Roger Cotes
16discovered by Carl Runge in 1901
17attributed to J. Willard Gibbs (1899) though originally discovered by Henry Wilbraham (1848)

45



Applying Simpson’s rule to each pair of subintervals results in

I =

∫ b

a
f(x) dx =

h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (iv)(ξ1)

+
h

3
[f(x2) + 4f(x3) + f(x4)]−

h5

90
f (iv)(ξ2)

...
...

+
h

3
[f(xn−2) + 4f(xn−1) + f(xn)]−

h5

90
f (iv)(ξm)

where n = 2m. The error term can again be simplified by using the IVT:

1

m

m∑
i=1

f (iv)(ξi) = f (iv)(ξ), where ξ ∈ (a, b).

Thus, the composite Simpson rule is

I =

∫ b

a
f(x) dx = Sn + En

where

Sn =
h

3
[f0 + 4f1 + 2f2 + 4f3 + 2f4 + . . .+ 2fn−2 + 4fn−1 + fn]

with h = (b− a)/n, n even, and

En = −h4 (b− a)

180
f (iv)(ξ)

where ξ ∈ (a, b) is the global truncation error and is one order less than the local truncation error
for the same reasons as before.

6.3 Romberg integration

Romberg integration18 is simply Richardson’s extrapolation applied to the composite trapezoidal
rule.

At the end of Section 6.1.1 we asserted (without proof) that

(32) I =

∫ b

a
f(x) dx = Tn + a2h

2 + a4h
4 + a6h

6 + . . .

where Tn is given by the composite trapezoidal rule. That is, the error is an even power series in the
step size h but the values of a2k are unknown and unimportant.

IDEA: We decide that n = 2m for m sufficiently large (see Example 6.3.1), and instead of halving h
we decide to double h (and so halve n) at each Romberg step. In this way, we do not need to make
additional functional evaluations.

For the first Romberg iteration we do h → 2h (or n → n/2) to give

(33) I = Tn/2 + a2(2h)
2 + a4(2h)

4 + a6(2h)
6 + . . .

so that 4×(32) − (33) gives

(34) I =
4Tn − Tn/2

3︸ ︷︷ ︸
T

(1)
n

+b4h
4 + b6h

6 + . . .

18Romberg, W. (1955), “Vereinfachte numerische Integration” (vereinfachte translates to simplified)

46



for some b2k whose values are unimportant. Now T
(1)
n is the first Romberg iterate and is accurate to

O(h4).

Remark: Written out explicitly

T (1)
n =

1

3

(
4Tn − Tn/2

)
=

h

3
[2f0 + 4f1 + 4f2 + 4f3 + 4f4 + . . .+ 4fn−1 + 2fn]

−2h

6
[f0 + 2f2 + 2f4 + . . .+ 2fn−2 + fn]

= Sn

is exactly Simpson’s Rule !

The process can be repeated (for as long as n can be sucessively halved). E.g. letting h → 2h and
n → n/2 again gives

(35) I = T
(1)
n/2 + b4(2h)

4 + b6(2h)
6 + . . .

so that 16×(34) − (35) gives

I =
16T

(1)
n − T

(1)
n/2

15︸ ︷︷ ︸
T

(2)
n

+c6h
6 + . . .

and the second Romberg iterate T
(2)
n is accurate to O(h6). Etc.

Remark: One can show that the second iteration of the Romberg integration also corresponds to a
Newton-Cotes formula (i.e. derived from Lagrange interpolation with higher-degree polynomials), but
higher ones don’t. Importantly, Romberg iterates are more numerically stable than the Newton-Cotes
formulas.

6.3.1 Example

Evaluate the integral I =

∫ 1

0
x7 dx = 0.125.

We let a = 0, b = 1, f(x) = x7 and write fi = f(xi) where xi = ih where h = 1/n and we choose
n = 1, 2, 4, 8, . . .. We use the following numerical methods:

(i) Tn = 1
2h[f0 + 2f1 + 2f2 + 2f3 + 2f4 + . . .+ 2fn−1 + fn] (composite Trapezoidal);

(ii) Sn = 1
3h[f0 + 4f1 + 2f2 + 4f3 + 2f4 + . . .+ 4fn−1 + fn] (composite Simpson).

Remark: We see that trapezoidal error drops by a factor of 4 as the value of n is doubled, consistent
with O(h2) error. The Simpson error drops by a factor of 16 on every doubling of n, consistent with
O(h4) error.

We now use the values of Tn in the table above to compute successive Romberg iterates:

(iii) T
(1)
n = (4Tn − Tn/2)/3 for n ≥ 2 (and note that these are Sn);

T
(2)
n = (16T

(1)
n − T

(1)
n/2)/15 for n ≥ 4;

T
(3)
n = (64T

(2)
n − T

(2)
n/2)/63 for n ≥ 8.

47



Trapezoidal Simpson

n Tn En Sn En

1 0.5000000000 0.3750000000

2 0.2539062500 0.1289062500 0.1718750000 0.0468750000

4 0.1603393555 0.0353393555 0.1291503906 0.0041503906

8 0.1340436935 0.0090436935 0.1252784729 0.0002784729

16 0.1272742003 0.0022742003 0.1250177026 0.0000177026

32 0.1255693834 0.0005693834 0.1250011111 0.0000011111

64 0.1251423980 0.0001423980 0.1250000695 0.0000000695

128 0.1250356028 0.0000356028 0.1250000043 0.0000000043

n Tn T
(1)
n T

(2)
n T

(3)
n

1 0.5000000000

2 0.2539062500 0.1718750000

4 0.1603393555 0.1291503906 0.1263020833

8 0.1340436935 0.1252784729 0.1250203451 0.1250000000

6.4 Problems in the evaluation of integrals

In many cases quadrature methods yield very good results. However, we may encounter situations in
which there are problems implementing methods which include the following:

• f(x) is discontinuous;

• f(x) has discontinuous or singular derivatives;

• f(x) has integrable singularities;

• f(x) is highly oscillatory;

• range of integration is infinite.

One normally has to devise a bespoke techniques to overcome the particular difficulty. These often
involve changing variables, dividing integrals into smaller parts, and explicitly removing singularities.
We consider some examples.

6.4.1 Example 1

Consider

I =

∫ 1

0

e−x

√
x
dx.

Here the singularity can be removed with a suitable transformation of variables: x = t2, dx = 2tdt gives

I =

∫ 1

0
2e−t2 dt.

6.4.2 Example 2

I =

∫ ∞

0

ln(x)

1 + x4
dx.

48



We divide the two problems up and write

I =

∫ 1

0

ln(x)

1 + x4
− ln(x) dx+

∫ 1

0
ln(x) dx+

∫ ∞

1

ln(x)

1 + x4
dx.

We can do the middle integral by hand (it equates to [x ln(x) − x]10 = −1). For the last integral we
make the change of variables x = 1/t to get

I = −
∫ 1

0

x4 ln(x)

1 + x4
dx− 1 +

∫ 0

1

log(1/t)

1 + (1/t4)

(
−1

t2

)
dt

and the last integral simplifies to

−
∫ 1

0

t2 ln(t)

1 + t4
dt.

Putting everything together gives

I = −1−
∫ 1

0

(x2 + x4) ln(x)

1 + x4
dx

and the integrand is smooth and bounded and can be approximated accurately using quadrature.

6.5 Weighted integrals

Another angle of attack is to factorise the awkward component of an integrand, w(x), say, from the
well-behaved part, f(x), say, by writing

I =

∫ b

a
w(x)f(x) dx

For example, we will later consider a = −1, b = 1, w(x) = 1/
√
1− x2.

In order to move onto this next topic – Gaussian quadrature – we first need to develop the theory of
orthogonal polynomials, which will also be of use at the end of the course.

6.6 Orthogonal polynomials

Defn: An integrable function w(x) is called a weight function on an interval x ∈ (a, b) if w(x) ≥ 0
for x ∈ (a, b) but w(x) ̸≡ 0 on any subinterval of (a, b). Thus w(x) can vanish at most at finitely many
isolated points in (a, b).

Defn: A set of functions {ϕi, i = 0, . . . , n} is said to be orthogonal on an interval [a, b] with respect
to a continuous weight function w(x) provided that the inner product of ϕi and ϕj ,

(36) ⟨ϕi, ϕj⟩ ≡
∫ b

a
w(x)ϕi(x)ϕj(x) dx = αiδij =

{
0, when i ̸= j,

αi, when i = j.

Note that

αi = ⟨ϕi, ϕi⟩ =
∫ b

a
w(x)ϕ2

i (x) dx > 0

from the definition of w(x).

Defn: If, additionally, αi = 1 for each i = 0, 1, . . . , n the set is said to be orthonormal.

Remark: In everything that follows we establish properties that hold when {ϕi(x), i = 0, . . . , n} is a
set of orthogonal polynomials such that ϕi is of degree i.

49



6.6.1 Properties of orthogonal polynomials

Property 1: Any polynomial of degree k ≤ n can be written as

(37) Pk(x) =
k∑

i=0

aiϕi(x).

Proof: Choose ak such that the coefficient of xk on both sides of the equation are the same. It follows
that Pk(x)− akϕk(x) is a polynomial of degree (k − 1).

Pk(x)− akϕk(x) =

k−1∑
i=0

aiϕi(x).

Now repeat the procedure to establish the result.

Remark: The coefficients can be calculated directly by using (36). Consider multiplying both sides of
(37) by w(x)ϕj(x) and integrating over a < x < b. Then

⟨Pk, ϕj⟩ =
k∑

i=0

ai⟨ϕi, ϕj⟩ =
k∑

i=0

aiαiδij = ajαj .

It follows that

aj =
1

αj

∫ b

a
w(x)Pk(x)ϕj(x) dx.

Property 2: ϕk(x) is orthogonal to any polynomial Pl(x) of lower degree, l < k.

Proof:

⟨Pl, ϕk⟩ =
l∑

i=0

ai⟨ϕi, ϕk⟩ = 0

because i ≤ l < k.

Property 3: The polynomial ϕk(x) has k distinct zeros in (a, b).

Proof: Let x = xi, i = 1, . . . , l denote all zeros of ϕk(x) of odd multiplicity in (a, b). The function

S(x) =
l∏

i=1

(x− xi)

is a polynomial of degree l ≤ k since ϕk(x) is a polynomial of degree k and therefore cannot have more
than k zeros.

The function S(x) changes sign at the same positions as ϕk(x). This implies that the product S(x)ϕk(x)
never changes sign on a < x < b and consequently

⟨S, ϕk⟩ ≡
∫ b

a
w(x)S(x)ϕk(x) dx ̸= 0.

From property 2 above it must be that S(x) is a polynomial of degree k and so l = k. This conclusion
also implies that xi are distinct.

50



6.6.2 Constructing a sequence of orthogonal polynomials

How do we construct ϕi for i = 0, . . . , n for a given interval (a, b) and weight function w(x) ?

That is, we want ϕi(x) to be polynomial of degree i such that ⟨ϕi, ϕj⟩ = 0 for 0 ≤ i, j,≤ n.

Defn: The requirements above only specify ϕi to within a multiplicative constant. To ensure uniqueness
one could make the set {ϕi(x), i = 0, . . . , n} orthonormal, but instead we often apply a standardisation
condition. This is often, but not always, ϕi(1) = 1 for all i = 0, . . . , n.

A manual approach

• First, ϕ0(x) = 1: this is a polynomial of degree 0 s.t. ϕ0(1) = 1.

• Next, ϕ1(x) = A1x+B1 is a polynomial of degree 1. We require ⟨ϕ1, ϕ0⟩ = 0 and this means

A1⟨x, ϕ0⟩+B1⟨1, ϕ0⟩ = 0

such that

ϕ1(x) = A1

(
x− ⟨x, 1⟩

⟨1, 1⟩

)
.

Imposing the standardisation ϕ1(1) = 1 determines A1.

• Next, ϕ2(x) = A2x
2 +B2x+ C2 is a polynomial of degree 2. Now we require

0 = ⟨ϕ2, ϕ0⟩ = A2⟨x2, 1⟩+B2⟨x, 1⟩+ C2⟨1, 1⟩

and
0 = ⟨ϕ2, ϕ1⟩ = A2⟨x2, ϕ1⟩+B2⟨x, ϕ1⟩+ C2⟨1, ϕ1⟩

and, from standardisation used here A2 + B2 + C2 = 1. That’s 3 equations in 3 unknowns that
can be solved for.

We can continue like this, but it gets complicated after the few terms.

6.6.3 The Gram-Schmidt process

But this can help...

Proposition: for k ≥ 0

(38) ϕk+1(x) = Ak+1

(
xϕk(x)−

k∑
i=0

⟨xϕk, ϕi⟩
⟨ϕi, ϕi⟩

ϕi(x)

)
.

Proof: (Inductive) First, assuming ϕk(x) is a polynomial of degree k then ϕk+1(x) is a polynomial of
degree k + 1. Assuming the set {ϕi(x), i = 0, . . . , k} is orthogonal, we have from (38) that

⟨ϕk+1, ϕj⟩ = Ak+1

(
⟨xϕk, ϕj⟩ −

k∑
i=0

⟨xϕk, ϕi⟩
⟨ϕi, ϕi⟩

⟨ϕi, ϕj⟩

)
= Ak+1

(
⟨xϕk, ϕj⟩ −

⟨xϕk, ϕj⟩
⟨ϕj , ϕj⟩

⟨ϕj , ϕj⟩
)

= 0

by (36). Hence ϕk+1 is orthogonal to all other ϕi(x), i = 0, . . . , k.

51



We can simplify (38) by noting that

⟨xϕk, ϕi⟩ =
∫ b

a
w(x)xϕk(x)ϕi(x) dx = ⟨ϕk, xϕi⟩ = 0, if i < k − 1

since xϕi is a polynomial of degree i+ 1 and using the earlier Property 2.

So, in fact, only the last two terms in the sum in (38) are non-zero and (38) can be reduced to a 3-term
recurrence relation

(39) ϕk+1(x) = Ak+1

(
xϕk(x)−

⟨xϕk, ϕk⟩
⟨ϕk, ϕk⟩

ϕk(x)−
⟨xϕk, ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

ϕk−1(x)

)
for k ≥ 1 with

ϕ1(x) = A1

(
x− ⟨x, 1⟩

⟨1, 1⟩

)
and ϕ0(x) = A0 such that Ak’s satisfy the standardisation condition.

This is the Gram-Schmidt process for determining orthogonal polynomials.

6.6.4 Example: Legendre Polynomials

Choose a = −1, b = 1 and w(x) = 1. Also let ϕi ≡ Pi (standard notation in the literature for this
choice) and use standardisation Pn(1) = 1.

• First P0(x) = 1.

• Then

P1(x) = A1

(
x−

∫ 1
−1 x.1 dx∫ 1
−1 1.1 dx

)
= A1x

so 1 = P1(x) = A1.1 means A1 = 1 and P1(x) = x.

• Next

P2(x) = A2

(
x.x−

∫ 1
−1 x.x.xdx∫ 1
−1 x.x dx

x−
∫ 1
−1 x.x.1 dx∫ 1
−1 1.1 dx

)
= A2(x

2 − (2/3)/2).

Applying 1 = P2(x) = A2(1− (1/3)) gives A2 = 3/2 so

P2(x) =
3

2
x2 − 1

2
.

• And we can go on (it gets complicated). For e.g. P3(x) =
5
2x

3 − 3
2x.

Remark: The set {Pk(x)} are called the Legendre polynomials. They satisfy a 3-term recurrence
relation

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x)

(no proof) but consistent with (39).

52



6.7 Gaussian quadrature

6.7.1 Introduction

Up to now the integral of a function has been approximated by a weighted sum of evaluations of the
integrand at prescribed equally-spaced points. What about optimising the points at which the integrand
is evaluated ?

Example: Consider the approximation∫ 1

−1
f(x) dx ≈ c1f(x1).

Q: Can we choose c1 and x1 to ensure that the approximation is exact for any linear polynomial ?

A: Let f(x) = a0 + a1x, then the LHS is 2a0 and the RHS is c1a0 + c1a1x1. If we want LHS = RHS for
arbitrary a0 and a1 then we must set c1 = 2 and x1 = 0. I.e.∫ 1

−1
f(x) dx ≈ 2f(0)

is exact for all linear polynomials f(x).

Exercise: Consider the approximation∫ 1

−1
f(x) dx ≈ c1f(x1) + c2f(x2).

We have 4 parameters c1, c2, x1 and x2 to choose. Show that these can be defined to exactly integrate
all cubic polynomials: f(x) = a0 + a1x+ a2x

2 + a3x
3, with ai arbitrary.

6.7.2 The main result

Theorem: Let {ϕi, i = 0, . . . , n} be a set of orthogonal polynomials with respect to the weight function
w(x) on an interval (a, b) (ϕi(x) is of degree i). Then the integration formula

(40)

∫ b

a
w(x)f(x) dx ≈

n∑
j=1

wjf(xj),

where

(41) wj =

∫ b

a
w(x)

n∏
i=1
i ̸=j

(x− xi)

(xj − xi)
dx

and xi, i = 1, . . . , n are the n zeros of ϕn(x), is exact if f(x) is a polynomial of degree (2n− 1) or less.

Note: If n = 1 then w1 =
∫ b
a w(x) dx.

Proof: Start by assuming that f(x) is a polynomial of degree (2n− 1) or less. Then we can write

(42) f(x) = q(x)ϕn(x) + r(x)

where q(x) and r(x) are both polynomials of degree (n − 1) or less. The coefficients of the powers of
xn−1, . . . , x0 in q(x) are chosen such that the coefficients of the powers of x2n−1, . . . , xn in the product

53



q(x)ϕn(x) match the coefficients of the same powers of f(x) and then the coefficients of the powers of
xn−1, . . . , x0 in r(x) sort out the remaining powers of xn−1, . . . , x0 of f(x).

It follows that ∫ b

a
w(x)f(x) dx =

∫ b

a
w(x)q(x)ϕn(x) dx+

∫ b

a
w(x)r(x) dx.

The first integral on the right-hand side vanishes by Property 2 of orthogonal polynomials.

Since r(x) is a polynomial of degree n − 1 we can exactly represent it by an interpolating Lagrange
polynomial of degree n− 1 that passes through the points x1, . . . , xn (noting that we’ve shifted indices
from 0 to 1 from earlier). I.e.

r(x) =
n∑

j=1

r(xj)
n∏

i=1
i ̸=j

(x− xi)

(xj − xi)

and so ∫ b

a
w(x)r(x) dx =

n∑
j=1

r(xj)

∫ b

a
w(x)

n∏
i=1
i ̸=j

(x− xi)

(xj − xi)
dx =

n∑
j=1

wj r(xj)

using (41). But, from (42),
r(xj) = f(xj)− q(xj)ϕn(xj) = f(xj)

since xj are the zeros of ϕn and the result follows.

6.7.3 Gauss-Legendre quadrature

This refers to Gaussian quadrature on the interval (−1, 1) with w(x) = 1. We have already established
that Legendre polynomials apply in this case.

For each n we develop a new approximation capable of exactly integrating polynomials of degree (2n−
1) or less (and thus increasing accuracy with increasing n when an approximation for f(x) not a
polynomial).

For each n first calculate the n zeros xj , j = 1, . . . , n of ϕn(x) ≡ Pn(x) and then calculate the weights
wj using (41).

For the first few Legendre polynomials we find:

n Legendre polynomial: Pn(x) roots: xj weights: wj

1 P1(x) = x x1 = 0 w1 = 2

2 P2(x) =
3
2x

2 − 1
2 x1 = −1/

√
3, x2 = 1/

√
3 w1 = 1, w2 = 1

3 P3(x) =
5
2x

2 − 3
2x x1 = −

√
3/5, x2 = 0, x3 =

√
3/5 w1 = w3 = 5/9, w2 = 8/9

E.g.: The two-point Gauss-Legendre quadrature scheme is∫ 1

−1
f(x) dx ≈ f(−1/

√
3) + f(1/

√
3)

and is exact for any cubic polynomial f(x). This answers the Exercise earlier.

6.7.4 Integrals defined on general intervals

The value of integrals defined over a general interval, (a, b), can be found by mapping (a, b) onto (−1, 1)
with, for e.g., the simple linear transformation t = (2x− a− b)/(b− a).

54



Example: Approximate the value of I =

∫ 3/2

1
e−x2

dx. using Gauss-Legendre quadrature.

First map (1, 32) to (−1, 1) with t = 2(2x− 5
2) or x = (t+ 5)/4. Then

I =
1

4

∫ 1

−1
exp(−(t+ 5)2/16) dt.

Using table above, with n = 1, I ≈ (2/4) exp(−25/16) = 0.104805

With n = 2, I ≈ (1/4) exp(−(5− 1/
√
3)2/16) + (1/4) exp(−(5 + 1/

√
3)2/16) = 0.109400.

The exact value is 0.109364 to 6 d.p. accuracy.

Remark: One of the problems of Gauss-Legendre is determining the zeros of polynomials for larger n.
It would be nice if the orthogonal polynomials had explicit zeros...

6.7.5 Gauss-Chebyshev quadrature

Consider Gauss quadrature with a = −1, b = 1 and the weight function w(x) = (1 − x2)−1/2. The
standard notation is that ϕi(x) = Ti(x) and are known as Chebychev polynomials of the first kind.
The standardisation condition Tn(1) = 1 applies.

Let’s use the manual approach. It will help to establish the value of some integrals before we start:

(43)

∫ 1

−1

x√
1− x2

dx =

∫ 1

−1

x3√
1− x2

dx = 0

since the integrands are odd functions; also, using the substitution x = cos θ, we have

(44)

∫ 1

−1

1√
1− x2

dx =

∫ π

0
dθ = π and

∫ 1

−1

x2

(1− x2)1/2
dx =

∫ π

0
cos2 θ dθ = π/2

• First T0(x) = 1 is polynomial of degree 0 s.t. T0(1) = 1.

• Next T1(x) = A1x+B1 is polynomial of degree 1 and we need

⟨T1, T0⟩ = 0 = A1⟨x, 1⟩+B1⟨1, 1⟩

The first inner product is zero by (43) and the second is π by (44). Hence B1 = 0 and A1 = 1 is
needed to satisfy T1(1) = 1. Thus T1 = x.

• Next let T2(x) = A2x
2 +B2x+ C2. We need

⟨T2, T0⟩ = 0 = A2⟨x2, 1⟩+B2⟨x, 1⟩+ C2⟨1, 1⟩

and so 0 = A2(π/2) + C2π or C2 = −1
2A2. We also need

⟨T2, T0⟩ = 0 = A2⟨x2, x⟩+B2⟨x, x⟩+ C2⟨1, x⟩ = B2(π/2)

Thus T2(x) = A2(x
2 − 1

2) and T2(1) = 1 means A2 = 2 so that T2(x) = 2x2 − 1.

Exercise: Show that the (n = 2) two-point Gaussian-Chebyshev quadrature rule is∫ 1

−1

f(x)√
1− x2

dx ≈ π

2
f(−1/

√
2) +

π

2
f(1/

√
2)

55



such that the approximation will be exact for polynomials f(x) up to and including cubics.

Proposition: The Chebyshev polynomials are given by Tn(x) = cos(n cos−1 x).

Proof: We first check the standardisation condition

Tn(1) = cos(n cos−1 1) = cos(0) = 1.

Next we show (by induction) that Tn(x) are are indeed polynomials of degree n. The first two functions
are

T0(x) = cos(0) = 1, T1(x) = cos(cos−1 x) = x,

polynomials of degree 0 and 1, respectively. Now consider

Tn+1(x) + Tn−1(x) = cos((n+ 1) cos−1 x) + cos((n− 1) cos−1 x)

= 2 cos(n cos−1 x) cos(cos−1 x) = 2xTn(x).

Thus, we have obtained the following recursion relation

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.

This can be used to show that if Tn(x) is a polynomial of degree n (for n ≥ 1), Tn+1(x) will be a
polynomial of degree n+ 1. Since it is true for n = 0, 1 it is true for all n.

Finally, we show that Tn(x) are indeed orthogonal on the interval (−1, 1) with respect to w(x) =
(1− x2)−1/2. In the following we make use again of the substitution x = cos θ, dx = − sin θdθ:∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ π

0
cos(nθ) cos(mθ) dθ =

1

2

∫ π

0
cos((n+m)θ) + cos((n−m)θ) dθ

=
1

2

[
sin((n+m)θ)

(n+m)
+

sin((n−m)θ)

(n−m)

]π
0

provided n ̸= m

= 0.

Remark: Gauss-Chebyshev quadrature is particularly simple since the zeros xj and weights wj are
explicitly known. The zeros follow from

0 = Tn(x) = cos(n cos−1 x) =⇒ n cos−1 x = jπ − π

2
, j = 1, . . . , n.

Hence the zeros are defined by

xj = cos

(
(2j − 1)π

2n

)
, j = 1, . . . , n.

We state (without proof) that the weights are wj = π/n, j = 1, . . . , n (see homework for n = 1, 2, 3.)

6.7.6 Other important orthogonal polynomials

The following two polynomials are defined on infinite intervals and can be useful for approximating
integrals on (0,∞) and (−∞,∞):

(i) Laguerre polynomials Ln(x): Defined on the interval (0,∞) with w(x) = e−x. Standardisation:
coefficient of xn in Ln(x) is (−1)n/n!.

(ii) Hermite polynomials Hn(x): Defined on the interval (−∞,∞) with weight function w(x) =
e−x2

. Standardisation: coefficient of xn in Hn(x) is 2
n.

56



7 Ordinary differential equations: initial value problems (IVPs)

7.1 Introduction

Differential equations play a central role in many scientific fields including mathematics, physics, biology,
chemistry, engineering as well as finance. In spite of what you are taught, most differential equations
cannot be solved in closed form. The numerical solution of differential equations is particularly useful
for PDEs (e.g. computational fluid dynamics models). Here, we will deal only with ODEs.

Numerical methods date back to Euler in the mid-18th century. The primary motivation then was in
approximating the solutions to Newton’s differential equations describing the motion of planets and
comets.

7.1.1 First-order ODEs

We consider the initial-value problem (IVP) consisting of the general 1st order ODE for y = y(t):

(45)
dy

dt
= f(t, y), a < t < b

subject to the initial condition

(46) y(a) = α.

Here, α, a, b are given constants and f is a given function of the independent variable, t, and the
dependent variable, y: t is used to indicate time (although not all IVPs relate to time-varying problems).

7.1.2 Higher-order ODEs and their reduction to a system of first-order ODEs

Q: What about ODEs which are of higher order ? For e.g. y′′(t) = −g (the motion of a projectile under
gravity) subject to y(0) = h, y′(0) = u. These are important too, surely ?

A: Sure. So let’s consider n-th order ODE written in its most general form:

(47) y(n)(t) = f(t, y, y′, y′′, . . . , y(n−1)), a < t < b

with initial conditions (since this is an initial-value problem)

(48) y(a) = α1, y′(a) = α2, . . . y(n−1)(a) = αn.

(say) where αi’s are all given as is f .

Now let u1(t) = y(t), u2(t) = y′(t) and so on up to un(t) = y(n−1)(t). Then we see that

u′1(t) = u2(t), u′2(t) = u3(t), . . . u′n−1(t) = un(t)

plus
u′n(t) = y(n)(t) = f(t, u1, u2, . . . , un)

from (47). Also from (48)

u1(a) = α1, u2(a) = α2, . . . un(a) = αn.

We can organise these relations into a first-order system of ODEs:
u1
u2
...

un−1

un


′

=


u2
u3
...
un

f(t, u1, u2, . . . , un)


57



and writing u(t) = (u1(t), u2(t), . . . , un(t))
T means the above is

(49) u′ = f(t,u)

where f = (u2, u3, . . . , f)
T and with u(a) = α = (α1, . . . , αn)

T .

Remark: (49) is just a vector version of the first-order scalar ODE (45) and everything developed for
first-order equations can be extended naturally to the higher-order system (see later).

7.2 Euler’s method

Euler’s method is the simplest numerical approximation method.

Consider again the initial-value problem (IVP)

(50)
dy

dt
= f(t, y), a < t < b, with y(a) = α.

We first divide the interval [a, b] into N equal subintervals. The solution is approximated at discrete
times ti = a+ ih, i = 0, . . . , N , called mesh points where h = (b− a)/N is the step size.

Euler’s method can be derived from Taylor expanding:

(51) y(ti+1) = y(ti + h) = y(ti) + hy′(ti) +
h2

2
y′′(ξi)

for some ξi ∈ (ti, ti+h). Assuming h is small justifies ignoring the h2 term and we let the approximation,
yi, to y(ti) that follows from this satisfy

yi+1 = yi + hf(ti, yi)

after using (50) to replace y′ by f . This iterative scheme is called Euler’s method. It is an example
of a first-order difference equation and is used for i = 0, 1, . . . , N − 1, whereby y1, y2, . . . up to yN ,
the approximation to y(b), is obtained. It requires y0 = α to start the iteration.

Remark 1: Euler’s method can also be derived by replacing the derivative in (50) by the forward
difference approximation

y′(ti) = f(ti, y(ti)), and y′(ti) ≈
y(ti + h)− y(ti)

h
.

Remark 2: Another basis for developing numerical ODE methods is to start with the (second) Fun-
damental Theorem of Calculus ∫ ti+h

ti

y′(t) dt = y(ti + h)− y(ti)

from which

yi+1 = yi +

∫ ti+1

ti

f(t, y(t)) dt

follows immediately and is exact. Numerical integration of the ODE is now reduced to how to approxi-
mate integrals. The most basic method is the ‘rectangle rule’ in which the integral above is approximated
by (ti+1 − ti)f(ti, y(ti)) (base times height) and this implies Euler’s method again. But immediately
better is the trapezoidal rule and this already hints at a plethora of methods for numerical integration
of ODEs.

58



7.2.1 Example

Consider the IVP
y′ = −y + t, 0 < t < 1, with y(0) = 1.

Exact solution: We can find the exact solution using integrating factors and it gives

y(t) = 2e−t + t− 1.

Numerical experiment: In the plots below we show the output of computer code implementing the
Euler method against the exact solution for step sizes h = 0.1, 0.05 and 0.025.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1

We observe that the error at t = 1 appears to half when h is halved. This suggests that the error is
proportional to h.

Q: Can we confirm this error ?

A: Yes, but first we have to distinguish between different types of error.

7.3 Local truncation error

Defn: The local truncation error is the error introduced at each step assuming that the solution at
the beginning of each step is exact. In going from step i to i+ 1, we denote this error by τi+1:

τi+1 = y(ti+1)︸ ︷︷ ︸
exact

− yi+1︸︷︷︸
approx

“Approx” means the numerical approximation to yi+1 assuming yi = y(ti), the exact solution.

Example: For Euler’s method it is

τi+1 = y(ti + h)− [y(ti) + hf(ti, y(ti))]

= y(ti) + hy′(ti) +
h2

2
y′′(ξi)− [y(ti) + hy′(ti)] =

h2

2
y′′(ξi)(52)

after using (51) and (50). Thus, the local truncation error for the Euler method is O(h2).

Remark: There are different definitions of the local truncation error and they can differ by a factor h
from our definition (e.g. Burden and Faires).

59



7.4 Global error

In Euler’s method the local truncation error of O(h2) isn’t O(h) as suggested by our numerical obser-
vations. Why ? Well, there we were observing the cumulative error after many steps. This gives rise to
the notion of ...

Defn: The global error is the error at a fixed time; for example at the final time tN = b. It is
generally difficult to determine the global error precisely, because it depends on how errors accumulate
and propagate during the iteration process. Indeed, this is a point we return to in a few pages. However,
for now let us be satisfied with the following rough estimate:

Since the number of steps is N = (b − a)/h = O(1/h), and the error made for a single step τi+1 =
O(hp+1), for some p, say, then the error at tN is estimated to be O(1/h)×O(hp+1) = O(hp). To make
this estimate, we have assumed that the errors accumulate linearly.

Defn: The order of accuracy of a method is defined to be p where the global error is O(hp).

E.g.: For Euler’s method since τi+1 = O(h2) we assert that the global error is O(h) so p = 1 and Euler’s
method is therefore a first-order method.

7.5 Solutions of linear difference equations

Sometimes one can solve the first-order difference equation defining Euler’s method by hand (linearity
is essential). This is useful as it allows us to compare yi with the exact solution y(ti).

7.5.1 Example

Solve the difference equation from Euler’s method applied to the ODE from Example 7.2.1:

y′ = −y + t, 0 < t < 1, with y(0) = 1.

Euler’s scheme for this IVP is

yi+1 = yi + h(−yi + ti), i = 0, . . . , N − 1,

with y0 = 1 and h = 1/N , ti = ih. This therefore reads as

yi+1 − (1− h)yi = ih2.

This is an inhomogeneous difference equation since there is a RHS term not related to yi.

One can solve this similar to how one would solve an linear inhomogeneous ODE in A-level/1st year
Calculus. That is, we start by writing

yi = yhi + ypi

where yhi , y
p
i are solutions of the homogeneous problem and a particular solution (respectively). That

is, we let yhi satisfy the homogeneous problem

yhi+1 − (1− h)yhi = 0

and we look for yhi = Azi where A and z are constants19, It follows that z = (1−h) and so yhi = A(1−h)i.
Next we seek a particular solution ypi to

ypi+1 − (1− h)ypi = ih2.

19this is like using the ansatz y(x) = Aerx for the Complementary Function when solving ODEs

60



Noting that i plays the part of x in continuous differential equations, we interpret the RHS term as being
like a function proportional to x. Since we would look for particular solutions of the form y(x) = Bx+C
in such an instance, it makes sense here to look for a solution ypi = iB + C. Then it follows

(i+ 1)B + C − (1− h)(iB + C) = ih2

and, since this equation holds for varying i, we equate coefficients of i to get B − (1 − h)B = h2 and
the constants to get B + C − (1− h)C = 0. This gives B = h and C = −1 and ypi = ih− 1. Thus, the
general solution is

yi = A(1− h)i + ih− 1.

Finally, when i = 0 we have y0 = 1 and this determines A = 2. In this way we have found the exact
solution

yi = 2(1− h)i + ih− 1

to the difference equation resulting from Euler’s method. That is, these are the values given explicitly
for any given i that are computed from the iterative scheme.

7.5.2 Analysis of error for example above

Since this is explicit and we already have the exact solution y(t) = 2e−t + t − 1 we can compute the
error for this example exactly, defined as

E(ti) = y(ti)− yi = 2e−ti + ti − 1− (2(1− h)i + ih− 1).

Note, this is not the local truncation error, since it includes the accumulation of error. Nor is it the
global error since ti is not a fixed time (yet).

Now ti = ih and so

(53) E(ti) = 2e−ih − 2(1− h)i.

Let us Taylor expand both terms to get

E(ti) = 2(1− ih+ i2h2/2 + . . .)− 2(1− ih+ i(i− 1)h2/2 + . . .) = ih2.

This increases with i and is O(h2), the same as the local truncation error. But note that we have
assumed ih is small in throwing away higher order terms in the expansions above. If ih is small, this
means it is only valid for small times At the final time when i = N = 1/h, ih = 1 is certainly not small.

This means the analysis above cannot be used to determine the global error.

Instead for E(tN ) we use ih = N and N = 1/h directly in (53) to give

E(tN ) = 2e−1 − 2(1− h)1/h

which is now the global error since tN = 1 is fixed. This expression is the basis for a different asymptotic
calculation. And we expand

(1− h)1/h = exp{(1/h) ln(1− h)} = exp{(1/h)(−h− h2/2− h3/3− . . .} = exp{−1− h/2 + . . .}
= e−1(1− h/2− . . .).

Using this in the above gives

E(tN ) = 2e−1 − 2e−1(1− h/2) +O(h2) = e−1h.

This confirms the global error in the example is O(h).

61



7.6 Euler’s method for higher-order ODEs.

We’ll consider second order ODEs, but it is straightforward to generalise the discussion to higher-order
ODEs (as suggested in Section 7.1.2). Consider

y′′ = f(t, y, y′), a < t < b, with y(a) = α, y′(a) = β.

This IVP can be transformed into a system of first-order ODEs by, say, setting v(t) = y′(t) so that

y′ = v, y(a) = α,

v′ = f(t, y, v), v(a) = β.

Euler’s method can be applied to each of these lines by letting vi and yi denote the approximations for
v(ti) and y(ti), respectively. This results in

yi+1 = yi + hvi, y0 = α,

vi+1 = vi + hf(ti, yi, vi), v0 = β.

This is a system of first-order difference equations which can be solved by iteration.

Alternatively, we can rearrange the first line to

vi = (yi+1 − yi)/h

and substitute into the second line which leads to a second-order difference equation in the discrete
variable yi:

yi+2 − yi+1

h
=

yi+1 − yi
h

+ h f

(
ti, yi,

yi+1 − yi
h

)
, y0 = α,

y1 − y0
h

= β

which reduces to

yi+2 = 2yi+1 − yi + h2f

(
ti, yi,

yi+1 − yi
h

)
, y0 = α, y1 = α+ hβ.

Remark 1: We have asserted (with some supporting evidence, athough there are theorems which really
nail this down) that Euler’s method is first-order accurate implying that its global error is O(h).

Remark 2: O(h) is not accurate enough for anything beyond the most basic applications. The fo-
cus from now will be in developing more sophisticated methods which improve the approximation by
reducing the local truncation error.

7.7 Higher-order Taylor methods

One (obvious) way to improve the approximation is to include more terms in the Taylor expansion that
gave rise to Euler’s method. I.e.

y(ti + h) = y(ti) + hy′(ti) +
h2

2
y′′(ti) +

h3

6
y′′′(ti) + . . .

7.7.1 Example: Taylor method of order 2

Let us include one extra term than for Euler’s method.

We use the ODE to replace y′(t) = f(t, y), but we also need an expression for the unknown second
derivative y′′(t) (if we don’t know y(t), we can’t say what y′′(t) is).

62



It is obtained by differentiating y′(t) = f(t, y) with respect to t, noting that f is a multi-variable function
and t appears twice. That is

y′′(t) =
d

dt
f(t, y(t)) =

dt

dt

∂f

∂t
+

dy

dt

∂f

∂y
= ft + fyf

using the chain rule. We are given f so, in principle at least, we know its partial derivatives ft and fy.

We therefore obtain the following iteration scheme

(54) yi+1 = yi + hf(ti, yi) +
h2

2
[ft(ti, yi) + fy(ti, yi) f(ti, yi)] , y0 = α.

where yi is an approximation for y(ti). Since we neglected terms of O(h3) in the derivation of this
scheme its local truncation error is O(h3). (54) is called the Taylor method of order 2 and is an
example of a higher-order Taylor method.

7.7.2 Taylor method of even higher order ?

For further improvement one needs to include the next term in the Taylor expansion h3y′′′(ti)/6 where

y′′′(t) =
d

dt
y′′(t) =

d

dt
[ft + fyf ] = ftt + ftyf + ftyf + fyyf

2 + fyft + fyfyf

(copious use of the chain rule again).

Remark: If it wasn’t obvious before, it is now: higher-order Taylor methods have the advantage of
higher order local truncation errors, but they require the evaluation of higher-order partial derivatives
of the function f(t, y). This can be complicated and time-consuming.

7.8 Runge-Kutta methods

Runge-Kutta methods aim to reduce the local truncation errors but by only using evaluations of f(t, y)
(and not its derivatives).

IDEA: To introduce the idea of the Runge-Kutta method we consider an iteration scheme of the form

(55) yi+1 = yi + af(ti + b, yi + c)

Note : If a = h and b = c = 0 this agrees with Euler’s method.

Q: Can we choose a, b, c “optimally” to reduce the truncation error ?

A: Yes, and we do so by matching this scheme to from Taylor’s second order.

Let us apply a Taylor expansion in the two arguments of the function f(t, y) in (55):

(56) yi+1 = yi + af(ti, yi) + aft(ti, yi)b+ afy(ti, yi)c+
a

2

[
fttb

2 + 2ftybc+ fyyc
2
]
+ . . .

Comparing (56) with equation (54) shows that we should choose

a = h, ab =
h2

2
, ac =

h2

2
f(ti, yi), =⇒ a = h, b =

h

2
, c =

h

2
f(ti, yi).

63



Since a, b and c are all of order h it follows that the next term in the Taylor expansion in (54) are all
O(h3).

Hence the Runge-Kutta iteration scheme has the following form

(57) yi+1 = yi + hf

(
ti +

h

2
, yi +

hk

2

)
where k = f(ti, yi)

Note that ti + h/2 is in the middle between ti and ti+1, and yi + hf(ti, yi)/2 is in the middle between
yi and yi+1 in Euler’s method. For this reason it is also called the midpoint method20.

It is classified as a Runge-Kutta method of order 2 (or RK2) because its local truncation error is
O(h3) and hence we expect a global error of O(h2).

Remark: Its application requires two functional evaluations per time step, k = f(ti, yi) and f(ti +
h/2, yi + hk/2).

Numerical experiment: The following table shows how RK2 compares to the Euler method when
applied to our previous example y′ = −y + t with y(0) = 1. In both cases the step size is h = 0.1. The
second-order method is clearly more accurate.

y(t)

t Euler RK2 exact

0.2 0.82000 0.838050 0.83746

0.4 0.71220 0.741604 0.74064

0.6 0.66288 0.698807 0.69762

0.8 0.66093 0.699950 0.69866

1.0 0.69736 0.737082 0.73575

7.8.1 A family of RK2 methods

There are other Runge-Kutta methods of order 2. They can be obtained by starting from

yi+1 = yi + af(ti, yi) + bf(ti + c, yi + d),

and by placing one condition on the four a, b, c, and d, before requiring use the order 2 Taylor method as
before to place three further conditions. In this way one obtains a one-parameter family of Runge-Kutta
methods of order 2.

7.8.2 Higher-order Runge-Kutta methods

If we allow more functional evaluations per time step then we can achieve higher order accuracy.

Of particular note, and very popular, is the fourth-order Runge-Kutta method known as RK4.
It requires four functional evaluations per step. The derivation is somewhat involved and we cite the

20we might also imagine that this scheme might emerge from the Fundamental Theorem of Calculus starting point
outlined earlier in which the integral is approximated by the Trapezoidal rule – a midpoint rule – rather than a rectangle
rule

64



result here for interest only. The functional evaluations required are

k1 = f (ti, yi)

k2 = f

(
ti +

h

2
, yi +

hk1
2

)
k3 = f

(
ti +

h

2
, yi +

hk2
2

)
k4 = f (ti + h, yi + hk3)

and the iteration scheme has the form

yi+1 = yi +
h

6
[k1 + 2k2 + 2k3 + k4].

7.9 Multistep methods

7.9.1 Introduction

The methods that we have considered so far are called one-step methods and can be written in the
general form

yi+1 = yi + hΦ(ti, yi, h)

where Φ is more and more complicated for higher-order methods.

They use the approximation yi from the previous mesh point ti to evaluate yi+1. After the calculation
of yi+1 this information is discarded, and the next iteration uses information from the following mesh
point.

Multistep methods employ a different philosophy. They use a number of previous approximations
yi, yi−1, yi−2, . . . and previous mesh points ti, ti−1, ti−2, . . . to arrive at an estimate of the solution at
ti+1.

This is clearly efficient because one can reuse functional evaluations from previous steps without needing
new calculations.

Defn: A linear k-step multistep method uses approximations from the previous k steps and can
be written in its most general form as

(58) yi+1 =

k∑
j=1

αj yi+1−j + h
k∑

j=0

βj f(ti+1−j , yi+1−j)

or perhaps more clearly as

yi+1 = α1yi + α2yi−1 + . . .+ αkyi+1−k

+hβ0f(ti+1, yi+1) + hβ1f(ti, yi) + . . .+ hβkf(ti+1−k, yi+1−k).(59)

Defn: If β0 ̸= 0 then yi+1 appears on both sides of the equation and (59) is then an implicit equation
for yi+1 and the method is called implicit. If β0 = 0 then the method is said to be explicit.

Remark: The reason for including implicit equations is that they are often more accurate than explicit
methods as we will see later.

65



Example: Multistep formulas arise naturally by applying various approximation formulas for deriva-
tives in Section 5 on Differentiation.

We have already explained that approximating the derivative in the ODE

y′(ti) = f(ti, y(ti))

by the forward difference formula y′(ti) ≈ [y(ti+1)− y(ti)]/h gives Euler’s method. But using the more
accurate central difference approximation y′(ti) ≈ [y(ti+1)− y(ti−1)]/2h instead gives

(60) yi+1 = yi−1 + 2hf(ti, yi)

which is an example of an explicit two-step method.

Remark: The fact that a multistep method requires the solution at k mesh points to determine the
solution at the next mesh point raises a new difficulty: how do we start the iteration ? Recall that the
initial condition tells us only y0.

The solution is often to use one-step methods of the required order of accuracy (such as Runge-Kutta)
to approximate the solution at the first k mesh points, y0, y1, . . . yk−1 and use the multistep method
thereafter.

7.9.2 Examples of multistep methods

The most popular k-step multistep formulas are (adopting the shorthand notation fj = f(tj , yj)) listed
below.

1. Adams-Bashforth (ABk):

yi+1 = yi + hβ1fi + hβ2fi−1 + . . .+ hβkfi+1−k.

(α1 = 1, αj = 0 for j = 2, . . . , k and β0 = 0, explicit)

2. Adams-Moulton (AMk):

yi+1 = yi + hβ0fi+1 + hβ1fi + . . .+ hβkfi+1−k.

(α1 = 1 and αj = 0 for j = 2, . . . , k, implicit).

3. Backward Differentiation formulas (BDk):

yi+1 = α1yi + α2yi−1 + . . .+ αkyi+1−k + hβ0fi+1

(βj = 0 for j = 1, . . . , k, implicit).

Q: Many coefficients are set to zero (we will say why this is so later), but how do we choose the values
of the remaining coefficients ?

A: Simples: we minimise the local truncation error, τi+1.

66



7.9.3 Example: Derivation of AB2

From Section 7.9.2 with k = 2, AB2 is given by

yi+1 = yi + hβ1fi + hβ2fi−1.

Recall the definition of the local truncation error being the difference between the exact solution at ti+1

and the numerical approximation at ti+1 assuming the solution at ti was exact.

Hence we obtain the local truncation error from

τi+1 = y(ti + h)−
[
y(ti) + hβ1y

′(ti) + hβ2y
′(ti − h)

]
=

[
y(ti) + hy′(ti) +

h2

2
y′′(ti) +

h3

6
y′′′(ti) + . . .

]
−y(ti)− hβ1y

′(ti)− hβ2

[
y′(ti)− hy′′(ti) +

h2

2
y′′′(ti) + . . .

]
after using y′ = f and Taylor expanding everything around ti. Collecting terms proportional to each
power of h gives

τi+1 = hy′(ti) [1− β1 − β2] + h2y′′(ti)

[
1

2
+ β2

]
+ h3y′′′(ti)

[
1

6
− β2

2

]
+ . . .

Our aim is to eliminate as many terms possible and, since we have two parameters β1 and β2 we can
take out terms proportional to h and h2 by choosing

1− β1 − β2 = 0, and
1

2
+ β2 = 0

which gives β1 =
3
2 and β2 = −1

2 and we note that h3 term is non-vanishing since 1
2β2 −

1
6 = −1

4 .

Hence, the AB2 scheme is given by

yi+1 = yi +
h

2
(3fi − fi−1).

Since the coefficient of h3 does not vanish we conclude that τi+1 = O(h3). The order of accuracy is
therefore 2 (p = 2).

Remark 1: AB1 is a one-step method and is easily seen to be Euler’s method. One can show that
ABk is kth-order accurate.

Remark 2: AMk can be shown to be (k + 1)-th order accurate and this is because AMk has an
additional free parameter β0 which can be tuned to eliminate one more order of truncation error.

Exercises: Follow the methods in the example above to show that:

(i) BD1 is given by
yi+1 = yi + hfi+1;

(ii) AM2 is given by

yi+1 = yi +
h

12
(5fi+1 + 8fi − fi−1).

67



7.9.4 Numerical experiment

Consider
y′(t) = y(t), 0 < t < 2, y(0) = 1

which has the exact solution y(t) = et. Three numerical methods are used to compute solutions: (i)
Euler’s method; (ii) (60) based on a central-difference (CD) approximation; (iii) AB4 ... which is given
by

yi+1 = yi +
h

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3)!

The table below shows the (global) errors E(tN ) at the end point tN = 2 as a function of h. We see
that errors reduce by different factors upon the halving of h, indicating the orders of accuracy of the
schemes.

E(tN )

Scheme h = 0.2 h = 0.1 h = 0.05 ratio of last two

Euler 1.20 0.662 0.349 1.9 ≈ 2

CD 0.0906 0.0238 0.00607 3.92 ≈ 4

AB4 0.0042 0.00038 0.00003 13.6 ≈ 16

7.9.5 Stability

Q: In a general k-step multistep method (59) one has (2k + 1) coefficients α1, . . . , αk and β0, . . . βk.
If none are set to zero, then it ought to be possible in the expansion of the local truncation error
to eliminate all terms proportional to y, y′, . . . , y(2k). In this way one could orchestrate it such that
τi+1 = O(h2k+1) and p = 2k. So why not do this ?

A: It turns out that the resulting formulas are numerically unstable as we shall now see...

One must distinguish between two different definitions of stability:

Defn: If, for a fixed T > 0, the numerical approximation to y(T ) remains bounded as h → 0 then we
say that the numerical method is stable or zero stable.

Defn: If, for a fixed h > 0, the numerical approximation to y(T ) remains bounded as T → ∞ then we
say that the numerical method is time-stable or A-stable or absolutely stable.

7.10 Stability (or zero-stability)

Let us consider the first of these which is best described by an example.

7.10.1 Example

Consider the following IVP

dy

dt
= y, 0 < t < 1, with y(0) = 1.

Exact solution: Easy to show y(t) = et and y(1) = e ≈ 2.71828.

Numerical experiment: Let’s apply two different 2-step multistep methods to the problem above:

68



(i) AB2: yi+1 = yi +
1
2h(3fi − fi−1)

(ii) SB2: yi+1 = −4yi + 5yi−1 + h(4fi + 2fi−1)

AB2 has order of accuracy 2, and SB2 is a scheme (SB = Special Brew) that I’ve invented but which
I’ve designed to have order of accuracy 3.

Because these are two-step methods we need y1 as well as y0 = 1 and we’ve used the exact value
y1 = y(h) = eh to avoid bias. We see that AB2 tends to the correct value as h → 0, but SB2 becomes
increasingly unbounded in the same limit (even though the local truncation error is O(h4)).

h 0.2 0.1 0.05 0.025

AB2 2.68771 2.70881 2.71568 2.71760

SB2 2.73433 -0.12720 −1.62× 106 −9.34× 1018

Q: What happened ?

A: The order of accuracy is based on the argument that the global error is O(1/h)×O(hp+1) = O(hp)
for a local truncation error of O(hp+1). That is, it assumes the error accumulates linearly.

But the local truncation error can “feed off itself” and accumulate errors exponentially and this is the
signature of numerical instability.

7.10.2 Analysing stability

In order to investigate stability we consider the limit h → 0.

In the h → 0 limit the αj terms in the multistep formula (59) remain important but the hβj terms can
be neglected. This step simplifies the numerical scheme enough to allow us to analyse the global error.

Example: Consider scheme SB2 above under limit h → 0. We obtain

yi+1 = −4yi + 5yi−1

or
yi+1 + 4yi − 5yi−1 = 0.

This is a homogeneous second-order difference equation with constant coefficients. We can solve
it using methods we outlined earlier in the Chapter:

We let yi = Azi and, upon substitution, get

Azi+1 + 4Azi − 5Azi−1 = 0.

Dividing through by Azi−1 (we are not interested in the trivial solution, z = 0) gives

0 = z2 + 4z − 5 =⇒ 0 = (z + 5)(z − 1) =⇒ z = −5 or z = 1.

Thus the general solution is given by the linear superposition of both solutions y = Azi with z = 1
and z = −5 as

yi = A(−5)i +B1i = A(−1)i5i +B.

Now y0 = 1 implies A+ B = 1 and y1 = eh = 1 + h+ O(h2). Neglecting O(h2) terms and using i = 1
gives 1 + h = A(−5) +B. Solving gives

A = −h/6, B = 1 + h/6.

69



Thus our exact numerical solution is

yi = −h

6
(−1)i5i + 1 +

h

6
.

We can see that the first term on the RHS grows exponentially as i increases. Indeed, at i = N = 1/h,
we have

yN = −h

6
(−1)N51/h + 1 +

h

6
= −h

6
(−1)Ne(1/h) ln(5) + 1 +

h

6

and the global error, E(1) = y(1)− yN is unbounded as h → 0 and N → ∞.

Defn: The component of the solution A(−5)i is known as a parasitic solution. It is introduced by
the discretisation rather than by the ODE itself. If such a mode exists, it will always be excited by
errors in the calculation such as round-off errors (as discussed in Chapter 1) or a small inaccuracy in
the initial data. That is, the numerical instability is not a function of the particular ODE or initial
condition in this problem, it is a property of the scheme.

Exercise: Show that the AB2 scheme is stable.

7.10.3 The root condition for stability

Let us now apply the same analysis to the general k-step multistep method (59). Consider

yi+1 =
k∑

j=1

αjyi+1−j + h
k∑

j=0

βjfi+1−j where fi = f(ti, yi).

Taking the h → 0 limit reduces this to

(61) yi+1 − α1yi − α2yi−1 − . . .− αkyi+1−k = 0

which is a homogeneous linear difference equation with constant coefficients. We look for solutions of
the form yi = Azi and thus obtain

zi+1 − α1z
i − α2z

i−1 − . . .− αkz
i+1−k = 0

since we are not interested in the trivial solution z = 0, dividing by zi+1−k results in

zk − α1z
k−1 − α2z

k−2 − . . .− αk−1z − αk = 0.

This is called the characteristic polynomial and is of degree k. There are k roots of this polynomial
which we label zj ∈ C, j = 1, 2, . . . , k. There are two possibilities:

(i) The roots are distinct and then the general solution of (61) is

yi = A1z
i
1 +A2z

i
2 + . . .+Akz

i
k.

(ii) If any of the roots are repeated, e.g. if z1 = z2, then A2z
i
2 is replaced with A2iz

i
1. This is just

like repeated roots to the characteristic equation for 2nd order ODEs where you form a new
linearly-independent second solution by multiplying by x.

Given the preceding definitions we can state the following theorem:

Theorem (root condition): A linear multistep formula is stable if and only if all roots zj of its
characteristic polynomial satisfy |zj | ≤ 1, and any root with |zj | = 1 has multiplicity one.

70



7.10.4 Global error, consistency and convergence

If the method is stable then one can specify the order of the global error of the method.

Theorem (Dahlquist): If a linear multistep formula has local truncation error O(hp+1) and is stable,
then the global error is O(hp). If p > 0, the method will converge to the exact solution as h → 0 and is
called convergent with order of accuracy p.

Defn: A linear multistep method is said to be consistent if the local truncation error goes to zero
faster than h: limh→0 τi+1/h = 0. That is, p > 0.

Defn: From the definition of consistent it follows also that a method is convergent if it is both
consistent and stable.

Example 1: Investigate stability and convergence of the following method

yi+1 =
1

2
yi +

1

2
yi−1 + 2hfi

Consider the h → 0 limit:

yi+1 −
1

2
yi −

1

2
yi−1 = 0

Setting yi = Azi leads to the characteristic polynomial

0 = z2 − 1

2
z − 1

2
= (z − 1)

(
z +

1

2

)
Both roots satisfy |z| ≤ 1, and the root with |z| = 1 is simple. It follows from the root condition that
the method is stable. Let us now investigate the order of accuracy. The local truncation error is

τi+1 = y(ti + h)−
[
1

2
y(ti)−

1

2
y(ti − h)− 2hy′(ti)

]
= y(yi) + hy′(ti) + . . .− 1

2
y(ti)−

1

2

[
y(ti)− hy′(ti) + . . .

]
− 2hy′(ti)

= −1

2
hy′(ti) + . . .

The local truncation error is O(h), so the order of accuracy is p = 0. The method is not consistent and
also not convergent.

Example 2: Investigate stability and convergence of the following multistep method

yi+1 = yi−3 +
4

3
h (fi + fi−1 + fi−2)

Here the number of steps is k = 4. The characteristic polynomial is

z4 − 1 = 0 =⇒ z = 1, z = −1, z = i, z = −i

All roots satisfy |z| = 1 and are simple. Hence the method is stable.

Additionally (exercise) one can show that the local truncation error is O(h3). Consequently, the order
of accuracy p = 2 and therefore the method is convergent.

71



7.10.5 A comment on ABk and AMk methods

The Adams-Bashforth (β0 = 0) and Adams-Moulton (β0 ̸= 0) formulae are given by

yi+1 = yi + hβ0fi+1 + hβ1fi + . . .+ hβkfi+1−k

The characteristic polynomial in all cases is z − 1 = 0, and from the root condition it follows that the
methods are all stable.

As mentioned before, one can show that the order of accuracy of ABk is p = k, and the order of accuracy
of AMk is p = k + 1. Hence the methods are convergent (since k ≥ 1).

7.10.6 Maximal order of accuracy

The maximal order of accuracy that can be achieved is determined by the following theorem:

Theorem (first Dahlquist stability barrier): A stable k-step multistep formula can have order
of accuracy at most:

• k: if explicit.

• k + 1: if implicit and k is odd.

• k + 2: if implicit and k is even.

(No proof)

Remark: It is for this reason many of the αj and βj are usually set equal to zero.

Remark: Implicit methods can be used practically in so-called predictor-corrector methods. For e.g.
one may use ABk to step forwards using an explicit scheme to find ỹi+1, say, (the predictor step) and
then use this value in an implicit scheme, such as AMk find yi+1 (the corrector step).

7.11 Time stability (absolute stability or A-stabilty)

7.11.1 Introduction

In the previous section stability is defined by the behaviour in the limit h → 0: a method is stable if
the approximation for the solution y(t) at a fixed time t = T remains bounded as h → 0.

Remark: Since neglecting O(h) terms is the same as setting f = 0 in the ODE, stability is effectively
determined by consider the canonical ODE y′ = 0 in 0 < t < T with y(0) = 1.

A different question asks how small h needs to be in order to get good numerical results. We will see that
this question is connected to a different notion of stability that is called time stability or absolute
stability. It is determined by the behaviour of the approximate solution for fixed h as time t → ∞.

7.11.2 The canonical time-stability problem

Time stability is determined by looking at another canonical IVP given by

(62) y′(t) = λy(t), t > 0, with y(0) = α

72



where c is a real constant and λ ∈ C, Re {λ} < 0.

The exact solution is y(t) = αeλt. Since Re {λ} < 0 then y(t) → 0 as t → ∞.

Defn: A method is called time stable or A-stable if, for fixed values of h > 0 and λ ∈ C, Re {λ} < 0,
it mimics this behaviour (i.e. the approximate numerical solution also approaches zero as t → ∞.)

Remark: As for stability, the canonical time-stability problem is chosen so that an exact solution to
the numerical difference equation that results can be determined exactly. But its motivation comes
from

7.11.3 Example: Euler’s method

If we apply Euler’s method to the canonical time-stability problem we obtain

yi+1 = yi + hλyi = (1 + hλ)yi, y0 = c.

The solution to this difference equation (y = Azi etc...) is

yi = c(1 + hλ)i.

We see that yi → 0 as i → ∞ if and only if

|1 + hλ| < 1

or
|hλ− (−1)| < 1.

Although h > 0 is real, λ is considered to be complex and so we can describe this condition as a function
of h̄ = hλ in the complex h̄-plane. Indeed, it says that the distance of h̄ from the point −1 on the real
axis should be less than 1. This is the interior of a circle of radius 1 centred on h̄ = −1 and falls entirely
to the left of the imaginary axis.

This region is called the time-stability region for Euler’s method.

For a particular value of λ it restricts the choice of h for which the method is time stable or absolutely
stable.

For example, consider λ ∈ R and λ < 0 then the above condition leads to −1 < 1 + hλ < 1 or
−2 < hλ < 0, and we obtain the following condition for h

0 < h <
−2

λ
=

∣∣∣∣ 2λ
∣∣∣∣

We see that if |λ| is very big then h has to be very small to get a reasonable result.

7.11.4 Example: Backward (implicit) Euler method

This scheme is new to us and given by

yi+1 = yi + hf(ti+1, yi+1).

We apply it to the canonical time-stability problem (62) to get

yi+1 = yi + hλyi+1 or yi+1 =
1

1− hλ
yi.

73



This difference equation has the solution

yi = c(1− hλ)−i

and it satisfies yi → 0 as i → ∞ if and only if

|1− hλ| > 1.

This condition holds in the the exterior of a circle in the h̄ = hλ-plane with radius 1 and centred on
hλ = 1.

Since we assumed that Re {λ} < 0 and h > 0 we are only interested in the left half of the complex
hλ-plane (Re {hλ} < 0). Hence the condition |1−hλ| > 1 does not lead to any restriction on h and the
method is time stable for any value h > 0.

7.11.5 General result

We now apply a general k-step multistep method to our canonical problem y′ = λy, Reλ < 0, y(0) = c
to get:

yi+1 = α1yi + . . .+ αkyi+1−k + hλβ0yi+1 + hλβ1yi + . . .+ hλβkyi+1−k.

This is again a difference equation with constant coefficients, and we can find solutions of the form
yi = Azi. After dividing by zi+1−k we obtain the stability polynomial

(63) (1− hλβ0) z
k − (α1 + hλβ1) z

k−1 − . . .− (αk−1 + hλβk−1) z − (αk + hλβk) = 0.

Since (63) is degree k is has roots z1, . . . , zk that depend on the value of h̄ = hλ.

Defn: A linear multistep method is time stable (absolutely stable/A-stable) for a given value of
hλ if all roots of the stability polynomial have modulus strictly less than one.

Defn: The time-stability region in the complex h̄-plane is the set of those values of h̄ = hλ for which
all roots of the stability polynomial have modulus less than one.

Remark: The boundary of the time-stability region can often be obtained explicitly by solving equation
(63) for h̄ = hλ and setting z = eiθ where 0 ≤ θ < 2π.

Theorem: The second Dahlquist barrier.

No A-stable linear multistep method of order p > 2 can exist.

This means there is a practical trade off between order of accuracy and stability.

7.12 Stiff ODEs

The investigation of time stability is particularly important for so-called stiff equations for which
small step sizes are often needed.

Defn: It is not easy to give a precise definition of a stiff ODE. Generally, it refers to differential
equations which contain a term which is rapidly varying such as, for example, a rapidly decaying
exponential term. The descriptor “stiff” originated from the numerical solution of mass-spring-damper
systems with a large damping stiffness (see HW sheet).

74



Example: Consider the IVP

(64)
dy

dt
= −100 (y − cos t)− sin t, 0 < t, with y(0) = 1.

Exact solution: One can readily find (integrating factors, or by making the substitution x(t) =
y(t)− cos t which leads to x′ = −100x) the general solution to be y(t) = cos t+ ce−100t and the initial
condition y(0) = 1 requires c = 0.

So, finally, y(t) = cos t and this is not a suspicious-looking solution.

Numerical experiment: Let us solve (64) numerically using the following two methods:

(i) AB2: yi+1 = yi +
1
2h(3fi − fi−1)

(ii) BD2: yi+1 =
4
3yi −

1
3yi−1 +

2
3hfi+1

(although the second method is implicit there is no problem solving for yi+1 in linear ODEs.)

We apply both methods to compute the value of y(1) whose exact values it cos(1) ≈ 0.5403023. BD2
behaves well for all h, but AB2 works only if h is small enough.

h AB2 BD2

0.2 14.40 0.5404

0.1 −5.7× 104 0.54033

0.05 −1.91× 109 0.540309

0.02 −5.77× 1010 0.5403034

0.01 0.5403020 0.5403026

0.005 0.5403022 0.5403024

As already noted, the substitution x(t) = y(t) − cos t transforms the ODE into our canonical problem
x′(t) = λx(t) with λ = −100. So let’s consider time-stability of both methods with λ = −100.

(i) AB2: Remembering that f = λy AB2 is written

yi+1 = yi +
3h

2
λyi −

h

2
λyi−1

and λ = −100 so
yi+1 = (1− 150h)yi + 50hyi−1.

It follows that the stability polynomial is z2−(1−150h)z−50h = 0, a quadratic equation with two
solutions. The method is time stable for those values of h for which the two roots have modulus
|z| < 1. The boundary of the stability region is most easily obtained by rearranging the stability
polynomial for h in terms of z and thereafter by setting z = 1 and z = −1 (these are the real
values of the boundary z = eiθ respectively)

h =
z2 − z

50− 150z
=⇒ h =

{
0 if z = 1,

0.01 if z = −1.

A more detailed investigation shows that |zj | < 1, j = 1, 2 when 0 < h < 0.01 and this is when
the method is time stable. This result tallies with the numerical results discussed previously.

75



(ii) BD2: Again with f = λy, BD2 is

yi+1 =
4

3
yi −

1

3
yi−1 +

2

3
hλyi+1

and with λ = −100
(3 + 200h)yi+1 − 4yi + yi−1 = 0.

The stability polynomial is therefore (3 + 200h)z2 − 4z + 1 = 0 and rearranging for h in terms of
z gives

h =
4/z − 1/z2 − 3

200
=⇒ h =

{
0 if z = 1,

−1/25 if z = −1.

This is harder to untangle. Since h > 0 there is no upper bound on h and a more detailed
investigation shows that the two roots z1, z2 satisfy |zj | < 1 for all h > 0. Therefore the method
is stable for all h as the table above confirms.

Remark: In general, implicit methods work better for stiff problems.

76



8 Ordinary differential equations: boundary value problems (BVPs)

8.1 Introduction

Let us consider canonical problems of the type

y′′ = f(x, y, y′) a < x < b,

with
y(a) = α, y(b) = β.

Remark 1: Instead of two conditions at the initial point x = a we now place one condition at either
end point. Since we cannot simply propagate initial information from one end point to the other, new
techniques are required for solving such problems.

Remark 2: These types of equations often occur in physical problems, for example for describing
a loaded beam, a hanging chain or a vibrating string. These physical problems are often position
dependent rather than time dependent, and for this reason we denote the independent variable in this
chapter by x instead of t.

Remark 3: We need to consider at least 2nd order ODEs since we have information to supply to the
ODE from two boundaries and thus need at least two constants of integration to appear in the solution.

Remark 4: One approach is to use Shooting Methods in which one transforms the BVP into an
IVP by initially guessing a second initial condition at x = a propagating the solution to x = b and then
iterating the initial condition in order to satisfy the condition at x = b. The name ‘shooting’ refers to
attempts to find the range of a projectile fired at a target by adjusting the initial speed and angle of
the projectile. It’s a fairly natural and unsophisticated method to implement.

8.2 Finite difference methods for linear problems

We consider specifically linear BVPs, still of the canonical 2nd order type

y′′ = f(x, y, y′) = p(x)y′ + q(x)y + r(x)

with Dirichlet21 boundary conditions

y(a) = α, y(b) = β.

IDEA: The idea of the finite difference methods is to replace derivatives by finite difference approxi-
mations, as we did in earlier. The method is best described by example:

8.2.1 Example:

Consider the BVP
y′′ = 0, 0 < x < 6,

with
y(0) = −1, y(6) = 5.

Exact solution: The general solution to the ODE is found by integrating twice to get y(x) = Ax+B.
From the boundary conditions follows B = −1 and A = 1. Thus the exact solution is y(x) = x− 1.

21implying the value of function is specified

77



Finite difference solution: First divide the interval [0, 6] into n equal subintervals, each of length
h = 6/n. Mesh points are defined as xi = ih, i = 0, 1, . . . , n where h = 6/n.

The term y′′(x) in the ODE is approximated by the central difference approximation at each of
the mesh points (see earlier in course) using

y′′(xi) =
y(xi + h)− 2y(xi) + y(xi − h)

h2
− h2

12
y(iv)(ξi)

where xi − h < ξi < xi + h. Letting yi ≈ y(xi) represent the approximate value of the solution at the
mesh points, we note that the equal spacing of the central difference approximation allows the above to
be approximated (i.e. we neglect the error term) by

0 = y′′(xi) ≈
yi+1 − 2yi + yi−1

h2
, for 1 ≤ i ≤ n− 1.

The ODE only holds inside the interval 0 < x < 6 and not on the boundaries x = 0 and x = 6 where
boundary conditions apply instead. In terms of our discrete representation of the solution on the mesh
points we have

y0 = −1, yn = 5

Thus, for i = 1 we write
y2 − 2y1 = −y0 = 1

and for i = 2, . . . , n− 2,
yi+1 − 2yi + yi−1 = 0,

whilst for i = n− 1 we have
−2yn−1 + yn−2 = −yn = −5

In total we have n − 1 equations for n − 1 unknowns, y1, y2, . . . yn−1 which we can arrange into an
(n− 1)× (n− 1) matrix system

−2 1 0 . . . 0

1 −2 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 1 −2




y1
y2
...
...

yn−1

 =


1
0
...
0
−5



E.g.: Let n = 6 so that h = 1 and yi ≈ y(i). Our matrix equation is 5× 5 and given by
−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2



y1
y2
y3
y4
y5

 =


1
0
0
0
−5


Solutions can be found by Gaussian elimination and are given by

y0 = −1, y1 = 0, y2 = 1, y3 = 2, y4 = 3, y5 = 4, y6 = 5.

That is, they have the form yi = i− 1 = y(i). That is, they agree with the exact solution.

Remark: One can show that the solution is exact also for other values of n. Why should this be ?
Because the exact solution is y(x) = x− 1 for which y(iv)(x) = 0 and hence no error was introduced in
making the central difference approximation.

78



8.2.2 General problems

Let us now consider return to the general problem

y′′ = f(x, y, y′) = p(x)y′ + q(x)y + r(x), a < x < b

with
y(a) = α, y(b) = β.

We define mesh points to be

xi = a+ ih, i = 0, 1, . . . , n, where h = (b− a)/n.

First and second derivatives of y are both approximated using central difference approximations

y′(xi) =
y(xi + h)− y(xi − h)

2h
+O(h2)

y′′(xi) =
y(xi + h)− 2y(xi) + y(xi − h)

h2
+O(h2)

both with errors of O(h2), the former proportional to y′′′(x) and the latter proportional to y(iv)(x).

We insert these approximations into the ODE using yi ≈ y(xi). and set p(xi) = pi, q(xi) = qi and
r(xi) = ri which gives

yi+1 − 2yi + yi−1

h2
= pi

yi+1 − yi−1

2h
+ qiyi + ri, 1 ≤ i ≤ n− 1

for interior points and
y0 = α, yn = β

on the boundaries. We use these two values in the i = 1 and i = n− 1 equations to give

y2

(
1− h

2
p1

)
− y1

(
2 + h2q1

)
= h2r1 − α

(
1 +

h

2
p1

)
and

−yn−1

(
2 + h2qn−1

)
+ yn−2

(
1 +

h

2
pn−1

)
= h2rn−1 − β

(
1− h

2
pn−1

)
respectively, whilst for i = 2, . . . , n− 2 we have

yi+1

(
1− h

2
pi

)
− yi

(
2 + h2qi

)
+ yi−1

(
1 +

h

2
pi

)
= h2ri

Making the abbreviations

ai = −2− h2qi, bi = 1 +
h

2
pi, ci = 1− h

2
pi

gives us the n− 1 equations

y2c1 + y1a1 = h2r1 − αb1

yi+1ci + yiai + yi−1bi = h2ri i = 2, 3, . . . , n− 2

yn−1an−1 + yn−2bn−1 = h2rn−1 − βcn−1

which can be written in matrix form as

a1 c1 0 · · · · · · 0

b2 a2 c2
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . bn−2 an−2 cn−2

0 · · · · · · 0 bn−1 an−1





y1
y2
...
...

yn−2

yn−1


=



h2r1 − αb1
h2r2
...
...

h2rn−2

h2rn−1 − βcn−1


This is a tridiagonal system that can be solved by Gaussian elimination. In fact there is an LU
decomposition which is defined iteratively for such systems.

79



8.2.3 Different types of boundary condition

In the above we have assumed Dirichlet-type boundary conditions in which y(a) and y(b) are given.
But one often has either Neumann-type conditions, or mixed Dirichlet-Neumann (so-called Robin)
conditions or even periodic boundary conditions. In each case, one has to deal with representing y′(a)
and/or y′(b).

E.g. Return to Example 8.2.1 and replace the BCs with y(0) = −1, y′(6) = 0. Since we no longer
have yn = y(6) = −5 to use in the i = n − 1 equation, we have to do something different. We use a
backwards difference approximation

y′(6) ≈ yn − yn−1

h

which allows us to write yn ≈ yn−1 + hy′(6) and we can use this in the i = n− 1 equation.

THIS SECTION IS OMITTED FROM THE COURSE IN 2025

8.3 Spectral methods for linear problems

We consider again our canonical boundary value problem (BVP) consisting of the 2nd order linear ODE

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x), a < x < b,

with (Dirichlet) BCs

(65) y(a) = α, y(b) = β.

It helps to write the ODE compactly as

(66) (Ly)(x) = r(x), a < x < b

by defining the differential operator

L =
d2

dx2
− p(x)

d

dx
− q(x).

IDEA: Approximate the unknown function as

(67) y(x) ≈ ỹ(x) =

N∑
n=1

cnϕn−1(x),

by expanding in terms of a known truncated set of basis functions ϕn(x) and unknown expansion
coefficients cn.

The step (67) classifies the method as a spectral method since it is also assumed that the set
{ϕn(x), n = 0, 1, 2, . . .} form a complete22 set in interval [a, b].

For example, one might expand y(x) in a Fourier series on the interval [a, b] and this the outcome of
separation of variables methods in the APDE course, but here we assume the functions ϕn(x) can be
chosen much more generally.

As well as being complete it is also convenient that the functions ϕn(x) are orthogonal on the interval
[a, b] with respect to a given weight function w(x). I.e.

⟨ϕm, ϕn⟩ ≡
∫ b

a
w(x)ϕm(x)ϕn(x) dx = 0 if m ̸= n

22complete means that the functions span the space

80



using the inner product notation from earlier in the course.

In (67) we decide N and ϕn(x) (or w(x)) and must subsequently devise a method for determining cn,
n = 0, 1, . . . , N .

We imagine that increasing N will produce more accurate approximations to y(x) (and this can be
shown formally to be the case). We also note that, in practice, the choice of ϕn(x) may be influenced
by anticipation of certain features of the solution, but this is beyond our scope.

Using (67) in (65) gives two equations:

N∑
n=1

cnϕn−1(a) = α,
N∑

n=1

cnϕn−1(b) = β

A further N − 2 equations are now required to ensure a total of N equations for the N unknowns
c1, . . . , cN . These come from the ODE and we first substitite (67) into (66) to get

(68) L

(
N∑

n=1

cnϕn−1(x)

)
=

N∑
n=1

cnLϕn−1(x) ≈ r(x), a < x < b.

(the last relationship is approximate because ỹ(x) is not exact in general).

Next, we make the error (Lỹ)(x) − r(x) orthogonal to as many functions, ϕm(x), as we can. In other
words, we take the inner product of both sides of equation (68) with ϕm−1(x) where m = 1, . . . , N − 2
to give the N − 2 equations

N∑
n=1

cn⟨ϕm−1,Lϕn−1⟩ = ⟨ϕm−1, r⟩, m = 1, . . . , N − 2.

Such an approach can be referred to Galerkin’s method.

Taken together we obtain a linear algebra problem consisting of N equations for N unknowns. It can
be written in matrix/vector form:

ϕ0(a) ϕ1(a) . . . ϕN−1(a)
ϕ0(b) ϕ1(b) . . . ϕN−1(b)

⟨ϕ0,Lϕ0⟩ ⟨ϕ0,Lϕ1⟩ . . . ⟨ϕ0,LϕN−1⟩
⟨ϕ1,Lϕ0⟩ ⟨ϕ1,Lϕ1⟩ . . . ⟨ϕ1,LϕN−1⟩

...
...

...
⟨ϕN−3,Lϕ0⟩ ⟨ϕN−3,Lϕ1⟩ . . . ⟨ϕN−3,LϕN−1⟩





c1
c2
...

cN−2

cN−1

cN


=



α
β

⟨ϕ0, r⟩
⟨ϕ1, r⟩

...
⟨ϕN−3, r⟩


.

This linear system of equations can be solved with, for example, Gaussian elimination.

Remarks: There are two main advantages of this method

(i) It delivers a continuous representation of the solution y(x) (see equation (67)) that can be evaluated
anywhere, not just at the mesh points.

(ii) One can show that the method has a fast (exponential) convergence to the exact solution as N
increases.

8.3.1 Example

Consider the ODE
y′′(x) = 0, −1 < x < 1

81



with
y(−1) = α, y(+1) = β.

Then L = d2/dx2, r(x) = 0 and a, b = −1, 1.

Exact solution: For this simple BVP, exact solution is easily found:

y(x) =
1

2
(β + α) +

1

2
(β − α)x

Numerical solution: We now use Galerkin’s method to approximate the solution numerically and
make the choice:

y(x) ≈ ỹ(x) =

4∑
n=1

cnTn−1(x)

I.e. N = 3 and ϕn(x) = Tn(x) and Chebyshev polynomials. They are defined on [−1, 1] and are
orthogonal w.r.t. the weight function w(x) = 1/

√
1− x2.

Recall: The Chebyshev polynomials are explicitly given by

Tn(x) = cos(n arccosx)

and satisfy

⟨Tm, Tn⟩ =


0 m ̸= n

π/2 m = n ̸= 0

π m = n = 0.

The first four polynomials have the form

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.

At the end points they take the values Tn(1) = cos(n · 0) = 1 and Tn(−1) = cos(nπ) = (−1)n.

Forming a system of equations:

The two BCs demand that

4∑
n=1

cnTn−1(−1) = α,
4∑

n=1

cnTn−1(1) = β

in other words
4∑

n=1

cn(−1)n = α,

4∑
n=1

cn = β.

The ODE reduces to
⟨Tm−1,Lỹ⟩ = ⟨Tm−1, 0⟩

for m = 1, 2 (since this gives us 4 equations in total). In other words

4∑
n=1

cn⟨Tm−1, T
′′
n−1⟩ = 0, m = 1, 2.

Putting everything into a single matrix system gives
1 −1 1 −1
1 1 1 1

⟨T0, T
′′
0 ⟩ ⟨T0, T

′′
1 ⟩ ⟨T0, T

′′
2 ⟩ ⟨T0, T

′′
3 ⟩

⟨T1, T
′′
0 ⟩ ⟨T1, T

′′
1 ⟩ ⟨T1, T

′′
2 ⟩ ⟨T1, T

′′
3 ⟩



c1
c2
c3
c4

 =


α
β
0
0

 .

82



From the definitions T ′′
0 ≡ 0, T ′′

1 ≡ 0. We further find that

⟨T0, T
′′
3 ⟩ = ⟨T1, T

′′
2 ⟩ = 0

because these inner products are integrals of odd functions from −1 < x < 1. Finally, we note from the
definitions that

T ′′
2 (x) = 4 so ⟨T0, T

′′
2 ⟩ = 4π, T ′′

3 (x) = 24x so ⟨T1, T
′′
3 ⟩ = 12π.

Thus we obtain the following system
1 −1 1 −1
1 1 1 1
0 0 4π 0
0 0 0 12π



c1
c2
c3
c4

 =


α
β
0
0

 .

We do not need Gaussian elimination to solve this matrix equation. From the last two lines we find
c3 = c4 = 0. Then the top two lines give

c1 − c2 = α, c1 + c2 = β

from which we deduce

c1 =
α+ β

2
, c2 =

β − α

2
.

The resulting approximation is

ỹ(x) =
α+ β

2
+

β − α

2
x

and agrees with the exact solution !

Remark: If the interval [a, b] does not coincide with the interval [−1, 1] but we wish to use Chebyshev
polynomials as our basis function then we can perform a change of variables of the form x′ = 1+ 2(x−
b)/(b − a) to map x ∈ [a, b] onto the interval x′ ∈ [−1, 1]. The variable change must be applied to the
BVP, including derivatives using the chain rule (i.e. d/dx = (dx′/dx)d/dx′ and dx′/dx = 2/(b− a)).

83



Appendix: code used for producing results

This is purely for interest. I’ve written out some Fortran 77 code which I used to produce numerical
results.

Bisection method

program bisection

integer n,nmax

real a,b,x,fa,fb,fx

real fun

print *,’enter a’

read *,a

print *,’enter b’

read *,b

print *,’enter nmax’

read *,nmax

fa = fun(a)

fb = fun(b)

if (fa*fb.ge.0.0) stop

do 10 n=1,nmax

x = 0.5*(a+b)

fx = fun(x)

print *,n,a,x,b,fa,fx,fb,(b-a)/2.0**n

if (fx*fa.ge.0.0) then

a = x

fa = fx

else

b = x

fb = fx

end if

10 end do

end

real function fun(x)

real x

fun = exp(x)-3.0*x

return

end

84



Fixed point iteration

program fixedpt

integer n,nmax

real x,xe,err

real fun

print *,’enter x0’

read *,x

print *,’enter x*’

read *,xe

print *,’enter nmax’

read *,nmax

err = x-xe

print *,0,x,e

do 10 n=1,nmax

x = fun(x)

print *,n,x,x-xe,(x-xe)/err

err = x-xe

10 end do

end

real function fun(x)

real x

fun = cos(x)

return

end

Newton-Raphson method

program newton

integer n,nmax

real x

real fun,fund

85



print *,’enter x0’

read *,x

print *,’enter nmax’

read *,nmax

print *,0,x

do 10 n=1,nmax

x = x-fun(x)/fund(x)

print *,n,x

10 end do

end

real function fun(x)

real x

fun = x**2-x-1

return

end

real function fund(x)

real x

fund = 2*x-1

return

end

Euler’s method

program euler

integer i,n

print *,’Enter N’

read *,n

real t,y,ye

y = 1.0

ye = 1.0

t = 0.0

h = 1.0/real(n)

print *,t,y,ye

86



do 10 i=1,n

y = y+h*(-y+t)

t = t+h

ye = 2.0*exp(-t)+t-1.0

print *,t,y,ye

10 end do

end

87


