

① Finite precision accuracy

n - digit accuracy \Rightarrow store number as

$$\underbrace{x.x \dots x}_{4 \text{ digit accuracy}} \times 10^9$$

4 digit accuracy

and round after every operation

i.e. if had: add two numbers then divide,
you would round after adding and then
divide.

② Matrix basics

- $A = A^T \Rightarrow$ Symmetric $\Rightarrow a_{ij} = a_{ji}$

- Diagonal: $a_{ii} = \underset{\wedge}{\alpha_i} \delta_{i,j}$

- $(AB)_{ij} = \sum_{k=1}^n a_{ik} B_{kj}$

- $\text{Det } A \neq 0 \Rightarrow Ax = b$ has unique solution

- $\text{Det } A = 0 \Rightarrow Ax = b$ has either no or many solutions

③ Gaussian Elimination

For $Ax = b$ use $\tilde{A} = [A \ b]$
 Augmented matrix

- row operations and backward substitution
- pivoting strategies $\leftarrow 3$ of them

④ LU Decomposition

- first step $a_{ij}^{(1)} = a_{ij} - \frac{a_{i1}}{a_{11}} a_{ij} \quad i \geq 2$

- k^{th} step $a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}}{a_{kk}^{(k)}} a_{kj}^{(k)} \quad i \geq k$

at k^{th} step

$$A = \begin{pmatrix} 1 & & & & \\ l_{21} & 1 & & & 0 \\ \vdots & l_{32} & \ddots & & \\ l_{n1} & 0 & \ddots & & \end{pmatrix} \begin{pmatrix} a_{11} & & & & \\ 0 & a_{22} & & & \\ \vdots & \vdots & \ddots & & \\ 0 & 0 & \ddots & a_{(k+1)k} & \\ & & & & \end{pmatrix} \quad \text{※}$$

⑤ some general results

Sheer 1 \rightarrow Q4, 5, 7, 9

sheer 2 \rightarrow Q4, 5, 6(a)

⑥ Permutation Matrices

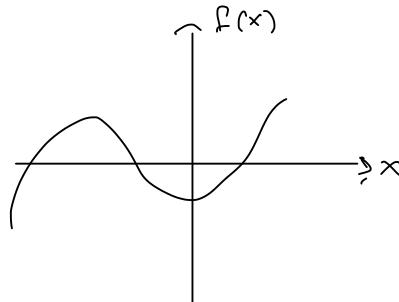
$$PP^T = I \Rightarrow P^{-1} = P^T \quad (\text{often } P^2 = I)$$

- pre multiply by $P_{ij} \Rightarrow$ swap i and j rows
- post multiply by $P_{ij}^T \Rightarrow$ swap i and j columns
- at k^{th} step $P_{ij} A = P_{ij} L_k^{-1} P_{ij}^T P_{ij} A^{(k)}$ *

follows from $A = L_k^{-1} A^{(k)}$

⑦ Bisection method for $f(x) = 0$

- draw graph



- find (a, b) pairs s.t. $f(a)f(b) < 0$

- $x_n = \frac{1}{2}(a+b) \rightarrow$

$$\left\{ \begin{array}{l} f(x_n) = 0 \quad \checkmark \text{ done} \\ f(a)f(x_n) < 0 \Rightarrow b = x_n \\ f(b)f(x_n) < 0 \Rightarrow a = x_n \end{array} \right.$$

\nwarrow

$n = n + 1$

- max error after n steps is

$$\textcircled{1} \quad \frac{|b-a|}{2^n} \quad \text{or if } \varepsilon = \text{tolerance}$$

$$\text{then } n > \frac{\log\left(\frac{|b-a|}{\varepsilon}\right)}{\log(2)} \quad \textcircled{2}$$

prove from $\textcircled{1}$ to $\textcircled{2}$

(8) Fixed point iteration

$$- f(x^*) = 0 \Rightarrow g(x^*) - x^* = 0$$

and

$$x_{n+1} = g(x_n) \text{ s.t } x_n \rightarrow x^*$$

- need fixed point theorem

for $x \in [a, b]$ need

$$\left\{ \begin{array}{l} g(x) \in [a, b] \\ |g'(x)| < 1 \end{array} \right.$$

implies exists unique $x^* \in [a, b]$ and

$$\forall x_0 \in [a, b], x_n \longrightarrow x^*$$

⑨ order of convergence

$$\lim_{n \rightarrow \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^\alpha} = \lambda \text{ where } \alpha = \text{order of convergence}$$

and λ = asymptotic error constant

- Note: error = $e_n = x_n - x^*$

- $\alpha = 1$ requires $\lambda < 1$ to converge, Linear

- $\alpha = 2, 3, \dots$ any λ works, but x_0 needs to be close to x^*

$$- g'(x^*) = g''(x^*) = \dots = g^{(p-1)}(x^*) = 0$$

and $g^{(p)}(x^*) \neq 0 \Rightarrow$ implies order of convergence $\alpha = p$

$$\text{and } \lambda = \frac{|g^{(p)}(x^*)|}{p!}$$

⑩ Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$g = x - \frac{f}{f'}$$

- need to be able to show

$$g'(x^*) = 0 \quad \text{and} \quad g''(x^*) = \frac{f''(x^*)}{f'(x^*)}$$

- if $|x_0 - x^*| < \frac{2}{M}$, where $M = \max |g''(\xi)|$

$\exists \epsilon(x_0, x^*)$ Then N-R converges

- if $f'(x^*) = f = f^{(m-1)}(x^*) = 0$

and $f^{(m)}(x^*) \neq 0$ then x^* is root
of multiplicity M

- if $M > 1$ then N-R \rightarrow linear

then define $F = \frac{f}{f'}$, let

$$g = x - \frac{F}{F'} \quad \text{and go again}$$

(11) Aitken Δ^2

$$\frac{x_{n+1} - x^*}{x_n - x^*} \hat{=} \frac{x_{n+2} - x^*}{x_{n+1} - x^*} \quad \begin{matrix} \leftarrow \\ \text{starting point} \end{matrix}$$

\nwarrow if x_n is linearly convergent

$$\Rightarrow \hat{x}_n = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n} \quad \text{where}$$

faster
than
linear

$$\Delta x_n = x_{n+1} - x_n$$

$$\Delta^2 x_n = x_{n+2} - 2x_{n+1} + x_n$$

(12) Multidimensional N-R Fast

$$F(\underline{x}^*) = 0$$

$$\text{method: } \underline{x}^{(m+1)} = \underline{x}^{(m)} - J^{-1} \underline{f}(\underline{x}^{(m)})$$

$$\text{and } J_{ij} = \frac{\partial f_i}{\partial x_j}$$

- need $\underline{x}^{(0)} - \underline{x}^*$ to be "small"

- if $\det(J) \Big|_{\underline{x}=\underline{x}^{(0)}} = 0$ when poor choice of $\underline{x}^{(0)}$

⑬ Steepest descent slow

for $\underline{f}(\underline{x}^*) = 0$

- let $g(\underline{x}) = \sum_{i=1}^n f_i^2$

and do $\underline{x}^{(m+1)} = \underline{x}^{(m)} - \alpha_m \nabla g$

gradient of g

$$\left(\frac{\partial g}{\partial x_i} \right)$$

s.t. $h'(\alpha_m) = 0$ where

$$h(\alpha_m) = g \left[\underline{x}^{(m)} - \alpha_m \nabla g(\underline{x}^{(m)}) \right]$$

" h is a height of new iterate"

⑭ Differentiation

- FD, BD, CD are three schemes to remember

$$- \left. \begin{array}{l} f'(x_0) \\ \text{or} \\ f''(x_0) \end{array} \right\} = \alpha_1 f(x_0 + h_1) + \alpha_2 f(x_0 + h_2)$$

$$\text{e.g. } \alpha f(x_0 - h) + \beta f(x_0) + \gamma f(x_0 + h)$$

- method :

Taylor expand about x_0 and match coefficients

of $f(x_0)$ $f'(x_0)$ $f''(x_0)$... (to

determine $\alpha, \beta, \gamma, \dots$ and to determine
error $E(h)$

- Rounding error : write $f(x) = \hat{f}(x) + e(x)$
where $|e| < \varepsilon$ = tolerance.

⑯ Richardson Extrapolation

if $N_1(h) \approx N$ & error is a series in h

Then compute $N_1(h)$ & $N_1(\frac{h}{2})$ & eliminate leading order error in h
(+ repeat by half and half ...)

⑯ Lagrange Polynomials

$$P_n(x) = \sum_{j=0}^n f(x_j) \prod_{\substack{i=0 \\ i \neq j}}^n \frac{(x - x_i)}{(x_j - x_i)}$$

↑
degree n polynomial through $((x_0, f(x_0)), \dots, (x_n, f(x_n)))$

⑯ Trapezoidal rule

$$\int_a^b f(x) dx = T_n - \frac{h^2}{12} (b-a) f''(\zeta)$$

error term

where

$$T_n = \frac{h}{2} \left[f(x_0) + 2(f(x_1) + \dots + f(x_{n-1})) + f(x_n) \right]$$

$$\& \quad h = \frac{b-a}{n} \quad x_i = a + i h$$

18 Simpsons rule

$$\int_a^b f(x) dx = S_n - \underbrace{\frac{h^4}{180} (b-a) f^{(iv)}(\xi)}_{\text{error}}$$

where

$$S_n = \frac{h}{3} \left[f_0 + 4f_1 + 2f_2 + \dots + 4f_{n-1} + f_n \right]$$

(n even)

(19) Romberg

$$\text{Trapezoidal rule: } \int_a^b f(x) dx = T_n + \underbrace{a_2 h^2 + a_4 h^4 + \dots}_{\text{error}}$$

↳ Compute T_n and $T_{\frac{n}{2}}$

Equivalent
to h

↑
equivalent to
2h

So eliminate $O(h^2)$ error

and repeat

20 Problems with quadrature

e.g.: - Singularities }
 - rapid oscillations }
 - infinite ranges } map to finite range
 } irregularities which
 make function non
 smooth, so remove problem
 by hand.

21) orthogonal Polynomials

For given $w(x)$ and (a, b) define

ϕ_i a polynomial of degree i , s.t

$$\langle \phi_i, \phi_j \rangle = \int_a^b w(x) \phi_i \phi_j dx = 0 \quad i \neq j$$

and standardisation condition

Note: CRAM-SCHMIDT

$\therefore \langle x \phi_i, \phi_j \rangle = \langle \phi_i, x \phi_j \rangle$ is useful

22) Gauss Quadrature

$$\int_a^b w(x) f(x) dx \simeq \sum_{j=1}^n w_j f(x_j)$$

exact if f is polynomial of degree $(2n-1)$ or less

Sampling points x_j are solutions of $\phi_j(x) = 0$

weights w_i are given by

$$w_j = \int_a^b \omega(x) \prod_{\substack{i=1 \\ i \neq j}}^n \frac{(x - x_i)}{(x_j - x_i)} dx$$

Also mapping intervals

(23) Euler's Method

$$y' = f, \quad y(a) = \alpha$$

$$y_0 = \alpha, \quad y_{i+1} = y_i + h f(t_i, y_i) \quad i=0, \dots, N-1$$

$$\text{where } t_i = a + ih \quad \text{and} \quad h = \frac{b-a}{N}$$

has local error $O(h^2)$

(24) Error

i) local error : $\tau_{i+1} = \underbrace{y(t_i + h)}_{\text{exact and Taylor expand about } t_i} - \underbrace{y_{i+1}}_{\text{approximate solution at previous step is exact.}}$

Dahlquist theorem if $\epsilon_{i+1} = O(h^{p+1})$
and $p > 0$ (consistent) and stable
then convergent.

If convergent then the global error is
 $O(h^p)$ and p is the order of
accuracy.

②5 Difference equations

of the form $a_1 y_{i+1} + a_2 y_i + a_3 y_{i-1} + \dots = f(i)$

solution: $y_i = y_i^h + y_i^p$ particular solution,
need to
guess

RHS = 0 and solve with $y_i = Az$
giving characteristic equation for z .

②6 Euler for higher order ODEs

e.g. $y'' = f(t, y, y')$, $y(a) = \alpha$, $y'(a) = \beta$

1) 1st order : Let $y = v$
 $v' = y'' = f(t, y, v)$

2) Euler step:

$$\begin{aligned} y_{i+1} &= y_i + hv_i \\ v_{i+1} &= v_i + h f(t_i, y_i, v_i) \end{aligned} \quad \left. \begin{array}{l} y_0 = \alpha \\ v_0 = \beta \end{array} \right\}$$

3) Eliminate to get second order difference equation.

② Higher order Taylor method:

$$y(t_i + h) = y(t_i) + h \underbrace{y'(t_i)}_f + \frac{h^2}{2} \underbrace{y''(t_i)}_{\frac{d}{dt} f = f_e + \rho f y}$$

$$\text{Error } \mathcal{E}_{i+1} = O(h^3)$$

28 RK2

$$y_{i+1} = y_i + a f(t_i, y_i) + b f(t_i + c, y_i + d)$$

Impose one constraint on a, b, c, d and
use Taylor to determine 3 others

29 Multi step methods

$$y_{i+1} = \alpha_1 y_i + \alpha_2 y_{i-1} + \dots + h \beta_0 f_{i+1} + h \beta_1 f_i + \dots$$

(to α_k)

Find α_i, β_j by eliminating T_{i+1} error

30 Stability $h \rightarrow 0$

- solve $y' = 0$ with $y^{(0)} = 1$

for $h \beta_j \rightarrow 0$

use the scheme to get a linear
difference equation $y_i = A z^i$ and
then a characteristic equation for z

giving root condition theorem:

If roots satisfy $|z_j| \leq 1$ $\forall j$ and
any z_j s.t. $|z_j|$ must be simple,
then method is stable

③ Time Stability

Solve $y' = \lambda y$, $y(0) = c$, $\lambda \in \mathbb{C}$
 $\operatorname{Re}\{\lambda\} < 0$

The scheme:

$$\rightarrow y_i = Az$$

\rightarrow Difference equation

\rightarrow Time stability polynomial

\rightarrow Time stability $|z_j| < 1$ for $\forall j$ in
 \mathbb{H} plane

$$\rightarrow \text{Boundary} \quad z = e^{i\theta}, \quad 0 \leq \theta \leq 2\pi$$

inside given λ sets values of h s.t
the scheme is time stable

③2 Stiff ODEs

Suffers from time-instability

↳ Need small h or implicit
schemes