

UNIVERSITY OF BRISTOL

School of Mathematics

NUMERICAL ANALYSIS

MATH 30029

(Paper code MATH-30029)

May/June 2023 2 hour 30 minutes

Solutions

Do not turn over until instructed.

Cont...

NA

Question 1 is new. Question 2 and 3 were set on 2022 resit exam. Question 4 was set for 2022 summer exam but not used due to impact of strikes.

1. (a) (Set homework problem)

Since A is non-singular we can write it uniquely as LU where L is lower triangular with $\text{diag}\{L\} = (1, 1, \dots, 1)^T$ and U is upper triangular. We can write

$$U = D\tilde{U}$$

where $D = \text{diag}\{U\}$ and $\tilde{U}_{ij} = u_{ij}/u_{ii}$ such that $\text{diag}\{\tilde{U}\} = (1, 1, \dots, 1)^T$. Now $A = LD\tilde{U}$ and $A = A^T$ so

$$LD\tilde{U} = \tilde{U}^T D L^T$$

and since \tilde{U}^T is lower triangular with 1s along the diagonal and LU -decomposition is unique then $\tilde{U}^T = L$ and hence result.

(b) (Follows standard method described in notes, in set homeworks and on past papers. Fractions are a bit fiddly, but determinant auxiliary question and part (a) should help debugging. I could have done a 4×4 to make it simpler, but wanted 5×5 for part (d); I could have asked students to put it into form in part (a), but thought this was asking too much.)

Perform LU decomposition in steps

$$\begin{aligned}
 \begin{bmatrix} 5 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{5} & 1 & 0 & 0 & 0 \\ \frac{1}{5} & 0 & 1 & 0 & 0 \\ \frac{1}{5} & 0 & 0 & 1 & 0 \\ \frac{1}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 & 1 & 1 & 1 \\ 0 & \frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} & -\frac{1}{5} \\ 0 & -\frac{1}{5} & \frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} \\ 0 & -\frac{1}{5} & -\frac{1}{5} & \frac{4}{5} & -\frac{1}{5} \\ 0 & -\frac{1}{5} & -\frac{1}{5} & -\frac{1}{5} & \frac{4}{5} \end{bmatrix} \\
 &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{5} & 1 & 0 & 0 & 0 \\ \frac{1}{5} & -\frac{1}{4} & 1 & 0 & 0 \\ \frac{1}{5} & -\frac{1}{4} & 0 & 1 & 0 \\ \frac{1}{5} & -\frac{1}{4} & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 & 1 & 1 & 1 \\ 0 & \frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} & -\frac{1}{5} \\ 0 & 0 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ 0 & 0 & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \end{bmatrix} \\
 &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{5} & 1 & 0 & 0 & 0 \\ \frac{1}{5} & -\frac{1}{4} & 1 & 0 & 0 \\ \frac{1}{5} & -\frac{1}{4} & -\frac{1}{3} & 1 & 0 \\ \frac{1}{5} & -\frac{1}{4} & -\frac{1}{3} & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 & 1 & 1 & 1 \\ 0 & \frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} & -\frac{1}{5} \\ 0 & 0 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \\
 &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{5} & 1 & 0 & 0 & 0 \\ \frac{1}{5} & -\frac{1}{4} & 1 & 0 & 0 \\ \frac{1}{5} & -\frac{1}{4} & -\frac{1}{3} & 1 & 0 \\ \frac{1}{5} & -\frac{1}{4} & -\frac{1}{3} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 & 1 & 1 & 1 \\ 0 & \frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} & -\frac{1}{5} \\ 0 & 0 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}
 \end{aligned}$$

Finally, $\det\{A\} = 5^4 \frac{4}{5} \frac{3}{4} \frac{2}{3} \frac{1}{2} = 1$ since product of diagonal elements of U .

(c) (*Unseen example, but not difficult*)

Application of LU decomposition is straightforward and done in one pass to give

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 1 \\ 0 & 1 & 0 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \cdots & 1 \\ 0 & 1 & 0 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n - (n - 1) \end{bmatrix}.$$

So clearly $A' = L'L'^T$.

(d) (*Permutation matrices in lecture notes, but students won't have seen a question presented like this before. In the second part, students can access solution using (b) even if P is not found, though it is deliberately nasty. I don't expect students to answer the very last part, which might be too vague anyway, but I don't want students to get 100%. I could drop last part.*)

When $n = 5$, A and A' are the same size and the 1st and 5th rows and columns have been switched so the permutation matrix associated with this is

$$P = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Pre-multiplication interchanges the 1st and 5th rows and post-multiplication interchanges columns.

Since $P = P^{-1}$ we solve $A'\mathbf{x}' = \mathbf{b}'$ with $\mathbf{x}' = P\mathbf{x}$ and $\mathbf{b}' = P\mathbf{b} = (1, 0, 2, 1, 4)^T$ and $A' = L'L'^T$. Then $\mathbf{L}'\mathbf{y}' = \mathbf{b}'$ is

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{y}' = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 4 \end{bmatrix}$$

gives $\mathbf{y}' = (1, 0, 2, 1, 0)^T$ and then solve $L'^T\mathbf{x}' = \mathbf{y}'$ or

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 1 \\ 0 & 1 & 0 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \mathbf{x}' = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

to give $\mathbf{x}' = (1, 0, 2, 1, 0)^T$ and finally $\mathbf{x} = P\mathbf{x}' = (0, 0, 2, 1, 1)^T$.

Without care, LU decomposition of sparse matrices can result in full triangular L and U matrices.

Continued...

2. (a) (Bookwork: definition in notes)

If, for $x_n \rightarrow x^*$ as $n \rightarrow \infty$ then

$$\lim_{n \rightarrow \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^\alpha} = \lambda$$

then α is the order of convergence and λ is the asymptotic error constant.

(b) (Simple example similar to examples in lectures, homeworks and exams.)

Fixed points are when $x_n \rightarrow x^*$ so $x_n^* - 2 = 0$ and $x_n^* = \pm\sqrt{2}$. Let $g(x) = x^2 - 2 + x$ s.t. $x_{n+1} = g(x_n)$. Then $g'(x) = 2x + 1$ and

$$|g'(\pm\sqrt{2})| = |1 \pm 2\sqrt{2}| > 1$$

By fixed point theorem, since $|g'(x^*)| \not< 1$, does not converge.

Here, $x^* = \pm\sqrt{2}$ are roots of $f(x) = x^2 - 2$ and $f'(\pm\sqrt{2}) \neq 0$ so Newton's method will converge quadratically. I.e. the scheme

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}$$

is a possible second order scheme.

(c) (Bookwork: derivation in notes)

Aitken's method for linear convergence:

$$\frac{x_{n+1} - x^*}{x_n - x^*} \approx \lambda \approx \frac{x_{n+2} - x^*}{x_{n+1} - x^*}$$

from part (a). So

$$(x_{n+1} - x^*)^2 \approx (x_{n+2} - x^*)(x_n - x^*)$$

and then

$$x_{n+1}^2 - 2x_{n+1}x^* \approx x_{n+2}x_n - x^*(x_n + x_{n+2})$$

which gives the result after rearranging.

(d) (Unseen example)

If $x_{n+1} = x_n + f(x_n)$ then

$$x_{n+2} = x_{n+1} + f(x_{n+1}) = x_n + f(x_n) + f(x_n + f(x_n)).$$

So from part (c) we have

$$x^* \approx x_n - \frac{[f(x_n)]^2}{x_n - 2x_n - 2f(x_n) + x_n + f(x_n) + f(x_n + f(x_n))}$$

which reduces to the equation given

(e) (Unseen, difficult and no calculation like this in course, although similar use of Taylor for some results.)

In this question we need to consider

$$g(x) = x - \frac{[f(x)]^2}{f(x + f(x)) - f(x)}$$

and we want to show that $g'(x^*) = 0$ where $f(x^*) = 0$ but $f'(x^*) \neq 0$. So

$$g' = 1 - \frac{2ff'}{f(x+f) - f} + \frac{f^2(1+f')f'(x+f) - f'}{(f(x+f) - f)^2}.$$

We let $x \rightarrow x^*$ and Taylor expand to get

$$g' = 1 - \frac{2ff'}{(f + ff' + \dots) - f} + \frac{f^2[(1+f)(f' + ff'' + \dots) - f']}{[(f + ff' + \dots) - f]^2}.$$

So

$$g' = 1 - 2 + \frac{f^2[f'^2 + ff'' + ff'f'']}{f^2f'^2} = \frac{(1+f')f''f}{f'^2}$$

and $g'(x^*) = 0$ since $f(x^*) = 0$.

(f) (*Unseen, but forward difference approximation for derivative is in course and easily reverse engineered.*)

If $h = f(x_n)$ is small then

$$f'(x_n) \approx \frac{f(x_n + h) - f(x_n)}{h}$$

which, if we use in, Newton is $x_{n+1} = x_n - f(x_n)/f'(x_n)$ gives the result (1).

Continued...

3. (a) (Basic calculus, but results required for later parts are given in question, just in case)

If n is odd, I_n is zero since x^n is odd and $1+x^2$ is even. Then

$$I_0 = \int_{-1}^1 \frac{1}{1+x^2} dx = [\tan^{-1}(x)]_{-1}^1 = \pi/2$$

$$I_2 = \int_{-1}^1 \frac{x^2}{1+x^2} dx = \int_{-1}^1 1 - \frac{1}{1+x^2} dx = 2 - \pi/2$$

$$I_4 = \int_{-1}^1 \frac{x^4}{1+x^2} dx = \int_{-1}^1 x^2 - \frac{x^2}{1+x^2} dx = \frac{2}{3} - (2 - \pi/2) = -\frac{4}{3} + \pi/2$$

(b) (Unseen example, but following standard methods in notes, homeworks, previous exams)

Start with $\phi_0(x) = 1$ is a polynomial of degree 0 s.t $\phi_0(1) = 1$. Next, let $\phi_1(x) = Ax+B$ and require

$$0 = \langle \phi_0, \phi_1 \rangle = A \int_{-1}^1 \frac{x}{1+x^2} dx + B \int_{-1}^1 \frac{1}{1+x^2} dx$$

implying $B = 0$. So $\phi_1(x) = x$ (s.t. $\phi_1(1) = 1$).

Next, let $\phi_2(x) = Cx^2 + Dx + E$ and we require

$$0 = \langle \phi_0, \phi_2 \rangle = C(2 - \pi/2) + D.0 + E.\pi/2$$

or $C(2 - \pi/2) = -\pi E/2$. Also require

$$0 = \langle \phi_1, \phi_2 \rangle = C.0 + D(2 - \pi/2) + E.0$$

so $D = 0$. Finally, $\phi_2(1) = 1$ so $C + E = 1$ and then we find

$$C = \frac{\pi/2}{\pi - 2}, \quad E = \frac{\pi/2 - 2}{\pi - 2}.$$

Therefore

$$\phi_2(x) = \frac{\pi/2}{\pi - 2}x^2 + \frac{\pi/2 - 2}{\pi - 2}.$$

(c) (Continue to follow standard methods)

For quadrature to be exact for polynomial of degree 3 or less we need $n = 2$, so zeros, $x = x_i$ ($i = 1, 2$) of $\phi_2(x) = 0$ are

$$x_i = \pm \sqrt{\frac{2 - \pi/2}{\pi/2}} = \pm \sqrt{\frac{4}{\pi} - 1}.$$

Let $x_1 = +\sqrt{\cdot}$, $x_2 = -\sqrt{\cdot}$. Weights are given by:

$$w_1 = \int_{-1}^1 \frac{(x - x_1)}{(x_1 - x_2)} w(x) dx$$

where $w(x) = 1/(1+x^2)$ in this question. Here $x_1 - x_2 = 2\sqrt{(4/\pi) - 1}$ and using part (a) again gives

$$w_1 = \pi/4$$

An almost identical calculation gives

$$w_2 = \int_{-1}^1 \frac{(x - x_2)}{(x_2 - x_1)} w(x) dx = \pi/4.$$

(d) (First part is standard, but I'm looking for simplification of the logs. Last part is harder, but similar examples in notes and homework sheets.)

We have

$$I = \int_{-1}^1 \frac{\ln(1+x)}{1+x^2} dx \approx \frac{\pi}{4} \left[\ln \left(1 + \sqrt{\frac{4}{\pi} - 1} \right) + \ln \left(1 - \sqrt{\frac{4}{\pi} - 1} \right) \right] = \frac{\pi}{4} \ln \left(2 - \frac{4}{\pi} \right).$$

Using a calculator this gives $I = -0.25 \dots$, and this is far from the exact value.

The primary reason for this is that $\ln(1+x)$ is divergent (but integrable) at $x = -1$. So we can adjust the integral and write

$$I = \int_{-1}^1 \frac{\ln(1+x)}{1+x^2} - \frac{\ln(1+x)}{2} dx + \frac{1}{2} \int_{-1}^1 \ln(1+x) dx.$$

The last integral is

$$C = \frac{1}{2} [x \ln x - x]_0^1 = \ln(2) - 1.$$

Therefore we have

$$I = \int_{-1}^1 \frac{\frac{1}{2}(1-x^2) \ln(1+x)}{1+x^2} + C$$

and we apply quadrature to the integral that remains, since $f(x) = \frac{1}{2}(1-x^2) \ln(1+x)$ is now bounded at $x = -1$.

This is enough for full marks.

However, students may want to calculate the result of this

$$I \approx \ln(2) - 1 + \frac{\pi}{8} \left(1 - \left(\frac{4}{\pi} - 1 \right) \right) \ln \left(2 - \frac{4}{\pi} \right) \approx -0.397.$$

Continued...

4. (a) (Standard method following examples in class and homeworks, but a new scheme)

We start with

$$y_{i+1} = \alpha_3 y_{i-2} + h\beta_1 f(t_i, y_i) + h\beta_2 f(t_{i-1}, y_{i-1}).$$

The local truncation error is

$$\begin{aligned}\tau_{i+1} &= y(t_i + h) - \alpha_3 y(t_i - 2h) - h\beta_1 y'(t_i) - h\beta_2 y'(t_i - h) \\ &= y + hy' + \frac{h^2}{2}y'' + \frac{h^3}{6}y''' + \dots \\ &\quad - \alpha_3 \left[y - 2hy' + \frac{4h^2}{2}y'' - \frac{8h^3}{6}y''' + \dots \right] \\ &\quad - hy' - h\beta_2 \left[y' - hy'' + \frac{h^2}{2}y''' - \dots \right].\end{aligned}$$

In order that the error is minimised we set

$$1 - \alpha_3 = 0, \quad 1 + 2\alpha_3 - \beta_1 - \beta_2 = 0, \quad 1 - 4\alpha_3 + 2\beta_2 = 0.$$

Therefore

$$\alpha_3 = 1, \quad \beta_1 = \frac{3}{2}, \quad \beta_2 = \frac{3}{2}.$$

Also

$$\tau_{i+1} = \frac{h^3}{6}y''' \left[1 + \frac{4}{3} \cdot 6 - \frac{9}{2} \right] = \frac{3}{4}h^3y''' = O(h^3).$$

So the order of accuracy is 2.

(ii) (unseen problem, follows standard method described in notes and homework sheets... potential difficulty is need complex cube roots of 1)

Set $f = 0$ and then $y_{i+1} - y_{i-2} = 0$. Consider $y = z^i$. Then $z^3 - 1 = 0$ and three roots are $z = 1$ and $z = (-1 \pm \sqrt{3})/2$. Obviously $|z| = 1$ in all cases.

The ‘root condition’ states that a multistep formula is stable if all the roots of the characteristic equation are s.t. $|z| \leq 1$ and any root s.t. $|z| = 1$ is simple. This is the case here and we conclude that the method is stable.

(b) (Unseen, but not too difficult)

We have $y'(t) = At + B$, $y(0) = 0$ and so we can integrate to get $y = \frac{1}{2}At^2 + Bt$.

Euler’s method:

$$y_{i+1} = y_i + hf(t_i, y_i) = y_i + h(At_i + B).$$

Now let $y_i = at_i^2 + bt_i$ and $t_i = ih$. Then

$$a(t_i + h)^2 + b(t_i + h) = at_i^2 + bt_i + Aht_i + hB.$$

I.e.

$$(2ah)t_i + ah^2 + bh = (Ah)t_i + hB.$$

Matching terms gives

$$a = A/2, \quad b = B - Ah/2.$$

The error in Euler’s method is

$$y(t_i) - y_i = \frac{A}{2}t_i^2 + Bt_i - \left(\frac{A}{2}t_i^2 + (B - Ah/2)t_i \right) = (Ah/2)t_i$$

as required.

(c) (Unseen, follows part (b))

We have now

$$y_{i+1} = y_{i-2} + \frac{3}{2}h(At_i + B) + \frac{3}{2}h(A(t_i - h) + B).$$

Again, let $y_i = at_i^2 + bt_i$ so that

$$a(t_i + h)^2 + b(t_i + h) = a(t_i - 2h)^2 + b(t_i - 2h) + \frac{3}{2}h(At_i + B) + \frac{3}{2}h(A(t_i - h) + B)$$

I.e.

$$2aht_i + ah^2 + bh = -4aht_i + 4ah^2 - 2hb + 3hAt_i + 3h(B - Ah/2)$$

and matching terms gives

$$a = A/2, \quad b = B.$$

The error is now

$$y(t_i) - y_i = \frac{A}{2}t_i^2 + Bt_i - \frac{A}{2}t_i^2 - Bt_i = 0.$$

This is explained by the fact that the 3rd derivative (and higher) of the exact solution is zero and so the local truncation error is zero.

End of examination.