
UNIVERSITY OF BRISTOL

School of Mathematics

NUMERICAL ANALYSIS
MATH 30029

(Paper code MATH–30029)

May/June 2023 2 hour 30 minutes

Solutions

Do not turn over until instructed.

Page 1 of 9



Cont... NA
Question 1 is new. Question 2 and 3 were set on 2022 resit exam. Question 4 was set for 2022
summer exam but not used due to impact of strikes.

1. (a) (Set homework problem)

Since A is non-singular we can write it uniquely as LU where L is lower triangular
with diag{L} = (1, 1, . . . , 1)T and U is upper triangular. We can write

U = DŨ

where D = diag{U} and Ũij = uij/uii such that diag{Ũ} = (1, 1, . . . , 1)T . Now
A = LDŨ and A = AT so

LDŨ = ŨTDLT

and since ŨT is lower trangular with 1s along the diagonal and LU -decomposition is
unique then ŨT = L and hence result.

(b) (Follows standard method described in notes, in set homeworks and on past papers.
Fractions are a bit fiddly, but determinant auxiliary question and part (a) should help
debugging. I could have done a 4 × 4 to make it simpler, but wanted 5 × 5 for part
(d); I could have asked students to put it into form in part (a), but thought this was
asking too much.)

Perform LU decomposition in steps
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Finally, det{A} = 54
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= 1 since product of diagonal elements of U .
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(c) (Unseen example, but not difficult)

Application of LU decomposition is straightforward and done in one pass to give
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.

So clearly A′ = L′L′T .

(d) (Permutation matrices in lecture notes, but students won’t have seen a question pre-
sented like this before. In the second part, students can access solution using (b) even
if P is not found, though it is deliberately nasty. I don’t expect students to answer
the very last part, which might be too vague anyway, but I don’t want students to get
100%. I could drop last part.)

When n = 5, A and A′ are the same size and the 1st and 5th rows and columns have
been switched so the permutation matrix associated with this is

P =


0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

 .

Pre-multiplication interchanges the 1st and 5th rows and post-multiplication inter-
changes columns.

Since P = P−1 we solve A′x′ = b′ with x′ = Px and b′ = Pb = (1, 0, 2, 1, 4)T and
A′ = L′L′T . Then L′y′ = b′ is
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gives y′ = (1, 0, 2, 1, 0)T and then solve L′Tx′ = y′ or
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to give x′ = (1, 0, 2, 1, 0)T and finally x = Px′ = (0, 0, 2, 1, 1)T .

Without care, LU decomposition of sparse matrices can result in full triangular L and
U matrices.

Continued...

Page 3 of 9



Cont... NA

2. (a) (Bookwork: definition in notes)

If, for xn → x∗ as n→∞ then

lim
n→∞

|xn+1 − x∗|
|xn − x∗|α

= λ

then α is the order of convergence and λ is the asymptotic error constant.

(b) (Simple example similar to examples in lectures, homeworks and exams.)

Fixed points are when xn → x∗ so x∗n
2 − 2 = 0 and x∗n = ±

√
2. Let g(x) = x2 − 2 + x

s.t. xn+1 = g(xn). Then g′(x) = 2x+ 1 and

|g′(±
√

2)| = |1± 2
√

2| > 1

By fixed point theorem, since |g′(x∗)| 6< 1, does not converge.

Here, x∗ = ±
√

2 are roots of f(x) = x2 − 2 and f ′(±
√

2) 6= 0 so Newton’s method
will converge quadratically. I.e. the scheme

xn+1 = xn −
x2n − 2

2xn

is a possible second order scheme.

(c) (Bookwork: derivation in notes)

Aitken’s method for linear convergence:

xn+1 − x∗

xn − x∗
≈ λ ≈ xn+2 − x∗

xn+1 − x∗

from part (a). So
(xn+1 − x∗)2 ≈ (xn+2 − x∗)(xn − x∗)

and then
x2n+1 − 2xn+1x

∗ ≈ xn+2xn − x∗(xn + xn+2)

which gives the result after rearranging.

(d) (Unseen example)

If xn+1 = xn + f(xn) then

xn+2 = xn+1 + f(xn+1) = xn + f(xn) + f(xn + f(xn)).

So from part (c) we have

x∗ ≈ xn −
[f(xn)]2

xn − 2xn − 2f(xn) + xn + f(xn) + f(xn + f(xn))

which reduces to the equation given

(e) (Unseen, difficult and no calculation like this in course, although similar use of Taylor
for some results.)

In this question we need to consider

g(x) = x− [f(x)]2

f(x+ f(x))− f(x)
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and we want to show that g′(x∗) = 0 where f(x∗) = 0 but f ′(x∗) 6= 0. So

g′ = 1− 2ff ′

f(x+ f)− f
+
f 2(1 + f ′)f ′(x+ f)− f ′

(f(x+ f)− f)2
.

We let x→ x∗ and Taylor expand to get

g′ = 1− 2ff ′

(f + ff ′ + . . .)− f
+
f 2[(1 + f)(f ′ + ff ′′ + . . .)− f ′]

[(f + ff ′ + . . .)− f ]2
.

So

g′ = 1− 2 +
f 2[f ′2 + ff ′′ + ff ′f ′′]

f 2f ′2
=

(1 + f ′)f ′′f

f ′2

and g′(x∗) = 0 since f(x∗) = 0.

(f) (Unseen, but forward difference approximation for derivative is in course and easily
reverse engineered.)

If h = f(xn) is small then

f ′(xn) ≈ f(xn + h)− f(xn)

h

which, if we use in, Newton is xn+1 = xn − f(xn)/f ′(xn) gives the result (1).

Continued...
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3. (a) (Basic calculus, but results required for later parts are given in question, just in case)

If n is odd, In is zero since xn is odd and 1 + x2 is even. Then

I0 =

∫ 1

−1

1

1 + x2
dx = [tan−1(x)]1−1 = π/2

I2 =

∫ 1

−1

x2

1 + x2
dx =

∫ 1

−1
1− 1

1 + x2
dx = 2− π/2

I4 =

∫ 1

−1

x4

1 + x2
dx =

∫ 1

−1
x2 − x2

1 + x2
dx =

2

3
− (2− π/2) = −4

3
+ π/2

(b) (Unseen example, but following standard methods in notes, homeworks, previous ex-
ams)

Start with φ0(x) = 1 is a polynomial of degree 0 s.t φ0(1) = 1. Next, let φ1(x) = Ax+B
and require

0 = 〈φ0, φ1〉 = A

∫ 1

−1

x

1 + x2
dx+B

∫ 1

−1

1

1 + x2
dx

implying B = 0. So φ1(x) = x (s.t. φ1(1) = 1).

Next, let φ2(x) = Cx2 +Dx+ E and we require

0 = 〈φ0, φ2〉 = C(2− π/2) +D.0 + E.π/2

or C(2− π/2) = −πE/2. Also require

0 = 〈φ1, φ2〉 = C.0 +D(2− π/2) + E.0

so D = 0. Finally, φ2(1) = 1 so C + E = 1 and then we find

C =
π/2

π − 2
, E =

π/2− 2

π − 2
.

Therefore

φ2(x) =
π/2

π − 2
x2 +

π/2− 2

π − 2
.

(c) (Continue to follow standard methods)

For quadrature to be exact for polynomial of degree 3 or less we need n = 2, so zeros,
x = xi (i = 1, 2) of φ2(x) = 0 are

xi = ±

√
2− π/2
π/2

= ±
√

4

π
− 1.

Let x1 = +
√

, x2 = −√ . Weights are given by:

w1 =

∫ 1

−1

(x− x1)
(x1 − x2)

w(x) dx

where w(x) = 1/(1+x2) in this question. Here x1−x2 = 2
√

(4/π)− 1 and using part
(a) again gives

w1 = π/4

An almost identical calculation gives

w2 =

∫ 1

−1

(x− x2)
(x2 − x1)

w(x) dx = π/4.
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(d) (First part is standard, but I’m looking for simplification of the logs. Last part is
harder, but similar examples in notes and homework sheets.)

We have

I =

∫ 1

−1

ln(1 + x)

1 + x2
dx ≈ π

4

[
ln

(
1 +

√
4

π
− 1

)
+ ln

(
1−

√
4

π
− 1

)]
=
π

4
ln

(
2− 4

π

)
.

Using a calculator this gives I = −0.25 . . ., and this is far from the exact value.

The primary reason for this is that ln(1 + x) is divergent (but integrable) at x = −1.
So we can adjust the integral and write

I =

∫ 1

−1

ln(1 + x)

1 + x2
− ln(1 + x)

2
dx+

1

2

∫ 1

−1
ln(1 + x) dx.

The last integral is

C =
1

2
[x lnx− x]20 = ln(2)− 1.

Therefore we have

I =

∫ 1

−1

1
2
(1− x2) ln(1 + x)

1 + x2
+ C

and we apply quadrature to the integral that remains, since f(x) = 1
2
(1−x2) ln(1+x)

is now bounded at x = −1.

This is enough for full marks.

However, students may want to calculate the result of this

I ≈ ln(2)− 1 +
π

8

(
1−

(
4

π
− 1

))
ln

(
2− 4

π

)
≈ −0.397.

Continued...
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4. (a) (Standard method following examples in class and homeworks, but a new scheme)

We start with
yi+1 = α3yi−2 + hβ1f(ti, yi) + hβ2f(ti−1, yi−1).

The local truncation error is

τi+1 = y(ti + h)− α3y(ti − 2h)− hβ1y′(ti)− hβ2y′(ti − h)

= y + hy′ +
h2

2
y′′ +

h3

6
y′′′ + . . .

−α3

[
y − 2hy′ +

4h2

2
y′′ − 8h3

6
y′′′ + . . .

]
−hy′ − hβ2

[
y′ − hy′′ + h2

2
y′′′ − . . .

]
.

In order that the error is minimised we set

1− α3 = 0, 1 + 2α3 − β1 − β2 = 0, 1− 4α3 + 2β2 = 0.

Therefore

α3 = 1, β2 =
3

2
, β2 =

3

2
.

Also

τi+1 =
h3

6
y′′′
[
1 +

4

3
.6− 9

2

]
=

3

4
h3y′′′ = O(h3).

So the order of accuracy is 2.

(ii) (unseen problem, follows standard method described in notes and homework sheets...
potential difficulty is need complex cube roots of 1)

Set f = 0 and then yi+1− yi−2 = 0. Consider y = zi. Then z3− 1 = 0 and three roots
are z = 1 and z = (−1±

√
3)/2. Obvsioulsy |z| = 1 in all cases.

The ‘root condition’ states that a multistep formula is stable if all the roots of the
characteristic equation are s.t. |z| ≤ 1 and any root s.t. |z| = 1 is simple. This is the
case here and we conclude that the method is stable.

(b) (Unseen, but not too difficult)

We have y′(t) = At+B, y(0) = 0 and so we can integrate to get y = 1
2
At2 +Bt.

Euler’s method:
yi+1 = yi + hf(ti, yi) = yi + h(Ati +B).

Now let yi = at2i + bti and ti = ih. Then

a(ti + h)2 + b(ti + h) = at2i + bti + Ahti + hB.

I.e.
(2ah)ti + ah2 + bh = (Ah)ti + hB.

Matching terms gives
a = A/2, b = B − Ah/2.

The error in Euler’s method is

y(ti)− yi =
A

2
t2i +Bti −

(
A

2
t2i + (B − Ah/2)ti

)
= (Ah/2)ti

as required.

Page 8 of 9



(c) (Unseen, follows part (b))

We have now

yi+1 = yi−2 +
3

2
h(Ati +B) +

3

2
h(A(ti − h) +B).

Again, let yi = at2i + bti so that

a(ti + h)2 + b(ti + h) = a(ti − 2h)2 + b(ti − 2h) +
3

2
h(Ati +B) +

3

2
h(A(ti − h) +B)

I.e.
2ahti + ah2 + bh = −4ahti + 4ah2 − 2hb+ 3hAti + 3h(B − Ah/2)

and matching terms gives
a = A/2, b = B.

The error is now

y(ti)− yi =
A

2
t2i +Bti −

A

2
t2i −Bti = 0.

This is explained by the fact that the 3rd derivative (and higher) of the exact solution
is zero and so the local truncation error is zero.

End of examination.
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