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Do not turn over until instructed.
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1. (a) The first step of Gaussian elimination is defined by

o) = a;; — Zlg,.
] ) ay 1j
fori,j =2,...,n and so
o _, %, % ()
a;;’ = aj; allah a;j allazl a;;’-
L.e. the reduced matrix is also symmetric.
(b) Perform LU decomposition in steps
2 =2 2 1 0 0] [2 -2 2
-2 -1 -1 = |-1 1 0|0 =3 1
2 -1 -1 1 0 1|0 1 =3
1 0 0] [2 -2 2
= |-1 1 0|0 =3 1| =LU.
1 8
I 1 —3 1_ 0 0 -3

(c) Solve in two steps: Ly = b then Ux =y. So first

1 0 0] [w 1
~1 1 of [w] = |0

2 =2 2 T 1
0 =3 1 ) = 1
0 0 —g T3 —%

Back substitution results in x = (0, -1, ).
@ @ 2
(L +pP)(I —pP) = (1 —p)I
using P? = I. Rearrange to get result.
(i)

The “Hence” approach:

1 -2 2
2 -1 =2

and
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means that P? = I provided ;2 = 9 and so the formula in the first part gives us

0 2 —2
Alz%l 2
21 3

The “or otherwise” means that the solution to part (c) is the first column of A=1. To
find 2nd and 3rd columns we need to solve Axy = (0, 1,0)” and Axz = (0,0, 1)T.

Continued. ..
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Cont... NA23-R

2. (a) (i) With € = 0 the curve is cubic through = —1,0,+1 and for 0 < e < 3 this is lifted
up the y-axis.
Should be obvious from graph that roots exist in intervals -2 <z < —1, 0 < z < %
and % < x < 1. Can be looser or tighter than this !
To back this up: f(—2) = —6+€e <0, f(=1) =€ >0. f(0)=€>0, f(3) =—-24e<0
f(1)=€e>0.

(i)
The map is defined by z,41 = g(z,) where g(z) = 2* +e. For 0 <z <1, 0<e<
g(z) < 1. Also

lg'(z)] =322 < 1, for 0 <z < 3.

Hence, by Fixed Point Theorem, there exists a unique fixed point z* € (0, 5) s.t.

o € [0, 1] will converge to z*.

1
2

Since ¢'(z) # 0 for z # 0 then ¢'(x*) # 0 and so the scheme has first order convergence.

(iii)

Simple: x; = €, 9 = € + € then
T3 =€+ € + 36 + 3¢ + €.

Aitken’s method applies to linearly convergent sequences, so can be used here. Quoting
from formula (or can deduce directly)

A e — (w2 — 71)°
! (xg — 2x9 + 1)

and, using the numbers supplied this gives

66

—e3 4+ 3€® + 37 + €Y

T e —

and we can binomial this
¥ e+ (1 — 3% — 3 — 67!
to get
vr e+ (1432 + 3+ 8+ 9 + O(%)) = e + € + 36 + 126" + O(”).
(iv)
Iteration is z, 41 = g(x,) where g(z) = (223 — ¢)/(32*> — 1). So

;o bz(a® —a+e)
g'(x) = (322 —1)2

and is zero at the roots of f(x). Thus scheme converges to roots (easy to see) and is
second order convergent since g”(z*) # 0.
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(b) (i) (Following standard methods and set homework examples. Part (ii) should be easy.)
Let fi(z,y) =y —32®> + 1 and fo(x,y) = 4oy — 83 — 1.

Jacobian is
J_ —06x 1
T\ 4y — 2427 4z

g 1 4x -1
T 4y \ —4y +242® —6x

And inverse is

Then Newton step is

1 4x -1 — 322 +1
(n+1) _ (n) 4 = Y
X x +4y(—4y+24:£2 —6:B)<4xy—8x3—1)

If x = (0, 1) then x®") = (—1/4, —1).

(i) We can eliminate between the two equations to get x® — z + % = 0, which is part
(a) with e = —1/4.

Continued. ..
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Cont... NA23-R

3. (a)

Iy =1 and, for n > 1 integrating by parts gives
[n = [_xne—a:}go + n]n_l = TLIn_l.

Thus I,, = n!ly and the result is shown.
We have ¢g(z) = 1, then let ¢ (z) = Ayz + By requires B; = 1 and

0= (¢1,P0) = /Ooo re *(Ajx + 1) dx

and using part (i) gives Ay = —I;/ls = —1/2. So ¢1(x) = 1 — x/2. Next let
gbg(x) = AQ(L’2 + BQZ‘ + 02. First 02 = ]_, then

0 = (¢, o) = /000 ve "(Ayx® + Box + 1) dx = 6Ay + 2By + O,
with
0= (¢g, 1) = /Doo ve " (Agx® + Byr+1)(1—2/2) dx = (6—12) Ay+(2—3) Bo+(1—1)C,
So 643 + By = 0 and 643 4+ 2By = —1 combine to give By = —1 and Ay = 1/6. Thus

Go(x) = 22/6 —x + 1.

For 2-point quadrature we define z; as zeros of ¢o(x). Solving 22 — 6z + 6 = 0 gives

l’lz?)—\/g, ZL’2:3—|—\/§

Then

wlz/ow%xexdx:%@—(?)—i—\/g)).

w1:%<1+§>

wngom%xe_mdx:%@—(?)—\/g)).
3
3

This simplifies to
(%)
wy =g | 1=

le<1+\/—§)Cos(3—\/§)+%(1—£>cos(3+\/§)

This simplifies to

Also

A 2-point scheme gives

2 3 3

or

J = cos(3) cos(v/3) + sin(3) sin(v/3) /v/3 ~ 0.239

The exact answer is found by integrating by parts

J = —/ w(el=D7 4 e(7imhT) gy
2 Jo
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to get

1 [ e(i—l)x e(—i—l)a:
J == d
2 /0 i1 TS

to give
1 1 1

‘]25((@'—1)2+<z’+1)2> =0

(d) From the relation given we take inner product with ¢, to get

(n + 1)<¢n7 ¢n> = _<x¢na ¢n71>

using orthogonality. Also taking inner product with ¢,,_» gives

0= —(2¢n 1, 0n2) — (0= 1)(Pn_2, on2)

Shifting n — 1 — n in the above and substituting into the first relation gives

(n + 1)<¢n> (bn) = n<¢n717 ¢n71>

as required.

Continued. ..
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Cont... NA23-R
4. (a) (i) (Standard methods)

The local truncation error is

ro= gt ) — ) — ) — )

2 2
h? h3
= y(t) +hy'(to) + 5y (1) + =y (t) + ..
h / ! h2 n h /
“ylt) = [0+ ) + e 4| = i

h® R

h "
— )+
12y()+

So error is O(h?).
(i)

In order to investigate stabilty we let h — 0 and obtain
0="Yir1 — i

The characteristic polynomial is obtained by setting y; = 2* and so z = 1. Using the
root condition (a linear multistep method is stable only if all roots of its characteristic
polynomial satisfy z < 1 and any root with |z| = 1 has multiplicity one) we see the
Adams-Moulton formula is stable.

(iii)

Theorem (Dahlquist): if a linear multistep method has a local truncation error O(h¥*!)
and is stable then the global error is O(h?). From (i) and (ii) it follows that the global
error is O(h?). The method is convergent since the global error vanishes as h — 0.
(iv)

To investigate time stability we set f(¢,y) = Ay and obtain

h h
Yir1 =Y + 5/\yi+1 + 5)\%

Then set y; = z* which reduces above to

\h \h

1—- =) =(1+2

(-7)= (%)
24 )k
2 )\h

The time-stability domain in the complex plane is defined by requiring all the roots
of the stability polynomial satisfy |z| < 1. Hence we need

or

z

(=2) — Ah| < [2 — M|

which means the distance to (—2) is smaller than distance to +2 and so we need
R{\L} < 0.
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(b) (i)

The second order ODE ¢ = g(z,y,vy'), y(a) = «, ¢'(a) = [ is transformed into a
system of ODEs with

y=u,  u =gy u
with y(a) = «, u(a) = 8.
Then we apply Euler’s method:

Yis1 = Yi + hu;, Wip1 = u; + hg(x;, yi, w;)

where x; = a + th. These equations are iterated from the starting values of yg = «
and ug = .

(i)
Now we choose g(x,y,y') = cos(y’) + 2zy and a = 0. Using u; = (y;41 — ¥;)/h we
obtain

Yit2 ; Yitr _ yz’+1h— Yi o 1 cos (W) + 2hx;y;
which is

Yigor = 2Yip1 — Yi + h? cos <w> + 2h2$z‘yi = f(yi+1, ?Jz’)

and x; = ih. The initial values are yo = a and (y; — yo)/h =  or y; = o + hf.

End of examination.
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