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Cont... NA

1. (a) The first step of Gaussian elimination is defined by

a
(1)
ij = aij −

ai1
a11

a1j

for i, j = 2, . . . , n and so

a
(1)
ji = aji −

aj1
a11

a1i = aij −
a1j
a11

ai1 = a
(1)
ij .

I.e. the reduced matrix is also symmetric.

(b) Perform LU decomposition in steps 2 −2 2

−2 −1 −1

2 −1 −1

 =

 1 0 0

−1 1 0

1 0 1


2 −2 2

0 −3 1

0 1 −3


=

 1 0 0

−1 1 0

1 −1
3

1


2 −2 2

0 −3 1

0 0 −8
3

 ≡ LU.

(c) Solve in two steps: Ly = b then Ux = y. So first 1 0 0

−1 1 0

1 −1
3

1


y1y2
y3

 =

1

0

0

 .
Forward substitution results in y = (1, 1,−2

3
). Next2 −2 2

0 −3 1

0 0 −8
3


x1x2
x3

 =

 1

1

−2
3

 .
Back substitution results in x = (0,−1

4
, 1
4
).

(d) (i)
(I + µP )(I − µP ) = (1− µ2)I

using P 2 = I. Rearrange to get result.

(ii)

The “Hence” approach:

µP = A− I =

 1 −2 2

−2 −2 −1

2 −1 −2


and

µ2P 2 =

9 0 0

0 9 0

0 0 9


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means that P 2 = I provided µ2 = 9 and so the formula in the first part gives us

A−1 =
−1

8

 0 2 −2

2 3 1

−2 1 3

 .
The “or otherwise” means that the solution to part (c) is the first column of A−1. To
find 2nd and 3rd columns we need to solve Ax2 = (0, 1, 0)T and Ax3 = (0, 0, 1)T .

Continued...
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2. (a) (i) With ε = 0 the curve is cubic through x = −1, 0,+1 and for 0 < ε < 3
8

this is lifted
up the y-axis.

Should be obvious from graph that roots exist in intervals −2 < x < −1, 0 < x < 1
2

and 1
2
< x < 1. Can be looser or tighter than this !

To back this up: f(−2) = −6+ε < 0, f(−1) = ε > 0. f(0) = ε > 0, f(1
2
) = −3

8
+ε < 0

f(1) = ε > 0.

(ii)

The map is defined by xn+1 = g(xn) where g(x) = x3 + ε. For 0 ≤ x ≤ 1
2
, 0 < ε ≤

g(x) ≤ 1
2
. Also

|g′(x)| = 3x2 < 1, for 0 ≤ x ≤ 1
2
.

Hence, by Fixed Point Theorem, there exists a unique fixed point x∗ ∈ (0, 1
2
) s.t.

x0 ∈ [0, 1
2
] will converge to x∗.

Since g′(x) 6= 0 for x 6= 0 then g′(x∗) 6= 0 and so the scheme has first order convergence.

(iii)

Simple: x1 = ε, x2 = ε+ ε3 then

x3 = ε+ ε3 + 3ε5 + 3ε7 + ε9.

Aitken’s method applies to linearly convergent sequences, so can be used here. Quoting
from formula (or can deduce directly)

x∗ ≈ x1 −
(x2 − x1)2

(x3 − 2x2 + x1)

and, using the numbers supplied this gives

x∗ ≈ ε− ε6

−ε3 + 3ε5 + 3ε7 + ε9

and we can binomial this

x∗ ≈ ε+ ε3(1− 3ε2 − 3ε4 − ε6)−1

to get

x∗ ≈ ε+ ε3(1 + 3ε2 + 3ε4 + ε6 + 9ε4 +O(ε6)) = ε+ ε3 + 3ε5 + 12ε7 +O(ε9).

(iv)

Iteration is xn+1 = g(xn) where g(x) = (2x3 − ε)/(3x2 − 1). So

g′(x) =
6x(x3 − x+ ε)

(3x2 − 1)2

and is zero at the roots of f(x). Thus scheme converges to roots (easy to see) and is
second order convergent since g′′(x∗) 6= 0.
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(b) (i) (Following standard methods and set homework examples. Part (ii) should be easy.)

Let f1(x, y) = y − 3x2 + 1 and f2(x, y) = 4xy − 8x3 − 1.

Jacobian is

J =

(
−6x 1

4y − 24x2 4x

)
And inverse is

J−1 = − 1

4y

(
4x −1

−4y + 24x2 −6x

)
Then Newton step is

x(n+1) = x(n) +
1

4y

(
4x −1

−4y + 24x2 −6x

)(
y − 3x2 + 1

4xy − 8x3 − 1

)
If x(0) = (0,−1) then x(1) = (−1/4,−1).

(ii) We can eliminate between the two equations to get x3 − x+ 1
4

= 0, which is part
(a) with ε = −1/4.

Continued...
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3. (a) I0 = 1 and, for n ≥ 1 integrating by parts gives

In =
[
−xne−x

]∞
0

+ nIn−1 = nIn−1.

Thus In = n!I0 and the result is shown.

We have φ0(x) = 1, then let φ1(x) = A1x+B1 requires B1 = 1 and

0 = 〈φ1, φ0〉 =

∫ ∞
0

xe−x(A1x+ 1) dx

and using part (i) gives A1 = −I1/I2 = −1/2. So φ1(x) = 1 − x/2. Next let
φ2(x) = A2x

2 +B2x+ C2. First C2 = 1, then

0 = 〈φ2, φ0〉 =

∫ ∞
0

xe−x(A2x
2 +B2x+ 1) dx = 6A2 + 2B2 + C2

with

0 = 〈φ2, φ1〉 =

∫ ∞
0

xe−x(A2x
2+B2x+1)(1−x/2) dx = (6−12)A2+(2−3)B2+(1−1)C2

So 6A2 +B2 = 0 and 6A2 + 2B2 = −1 combine to give B2 = −1 and A2 = 1/6. Thus
φ2(x) = x2/6− x+ 1.

(b) For 2-point quadrature we define xi as zeros of φ2(x). Solving x2 − 6x+ 6 = 0 gives

x1 = 3−
√

3, x2 = 3 +
√

3.

Then

w1 =

∫ ∞
0

(x− x2)
(x1 − x2)

xe−x dx =
−1

2
√

3

(
2− (3 +

√
3)
)
.

This simplifies to

w1 =
1

2

(
1 +

√
3

3

)
Also

w2 =

∫ ∞
0

(x− x1)
(x2 − x1)

xe−x dx =
1

2
√

3

(
2− (3−

√
3)
)
.

This simplifies to

w2 =
1

2

(
1−
√

3

3

)
(c) A 2-point scheme gives

J ≈ 1

2

(
1 +

√
3

3

)
cos(3−

√
3) +

1

2

(
1−
√

3

3

)
cos(3 +

√
3)

or
J = cos(3) cos(

√
3) + sin(3) sin(

√
3)/
√

3 ≈ 0.239

The exact answer is found by integrating by parts

J =
1

2

∫ ∞
0

x(e(i−1)x + e(−i−1)x) dx
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to get

J =
1

2

∫ ∞
0

e(i−1)x

i− 1
+

e(−i−1)x

−i− 1
dx

to give

J =
1

2

(
1

(i− 1)2
+

1

(i+ 1)2

)
= 0.

(d) From the relation given we take inner product with φn to get

(n+ 1)〈φn, φn〉 = −〈xφn, φn−1〉

using orthogonality. Also taking inner product with φn−2 gives

0 = −〈xφn−1, φn−2〉 − (n− 1)〈φn−2, φn−2〉

Shifting n− 1→ n in the above and substituting into the first relation gives

(n+ 1)〈φn, φn〉 = n〈φn−1, φn−1〉

as required.

Continued...
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4. (a) (i) (Standard methods)

The local truncation error is

τ = y(ti + h)− y(ti)−
h

2
y′(ti + h)− h

2
y′(ti)

= y(ti) + hy′(t0) +
h2

2
y′′(ti) +

h3

6
y′′′(ti) + . . .

−y(ti)−
h

2

[
y′(ti) + hy′′(ti) +

h2

2
y′′′(ti) + . . .

]
− h

2
y′(ti)

=

(
h3

6
− h3

4

)
y′′′(ti) + . . .

= −h
3

12
y′′′(ti) + . . .

So error is O(h3).

(ii)

In order to investigate stabilty we let h→ 0 and obtain

0 = yi+1 − yi

The characteristic polynomial is obtained by setting yi = zi and so z = 1. Using the
root condition (a linear multistep method is stable only if all roots of its characteristic
polynomial satisfy z ≤ 1 and any root with |z| = 1 has multiplicity one) we see the
Adams-Moulton formula is stable.

(iii)

Theorem (Dahlquist): if a linear multistep method has a local truncation errorO(hp+1)
and is stable then the global error is O(hp). From (i) and (ii) it follows that the global
error is O(h2). The method is convergent since the global error vanishes as h→ 0.

(iv)

To investigate time stability we set f(t, y) = λy and obtain

yi+1 = yi +
h

2
λyi+1 +

h

2
λyi

Then set yi = zi which reduces above to

z

(
1− λh

2

)
=

(
1 +

λh

2

)
or

z =
2 + λh

2− λh
The time-stability domain in the complex plane is defined by requiring all the roots
of the stability polynomial satisfy |z| < 1. Hence we need

|(−2)− λh| < |2− λh|

which means the distance to (−2) is smaller than distance to +2 and so we need
<{λh} < 0.
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(b) (i)

The second order ODE y′′ = g(x, y, y′), y(a) = α, y′(a) = β is transformed into a
system of ODEs with

y′ = u, u′ = g(x, y, u)

with y(a) = α, u(a) = β.

Then we apply Euler’s method:

yi+1 = yi + hui, ui+1 = ui + hg(xi, yi, ui)

where xi = a + ih. These equations are iterated from the starting values of y0 = α
and u0 = β.

(ii)

Now we choose g(x, y, y′) = cos(y′) + 2xy and a = 0. Using ui = (yi+1 − yi)/h we
obtain

yi+2 − yi+1

h
=
yi+1 − yi

h
+ h cos

(
yi+1 − yi

h

)
+ 2hxiyi

which is

yi+2 = 2yi+1 − yi + h2 cos

(
yi+1 − yi

h

)
+ 2h2xiyi = f(yi+1, yi)

and xi = ih. The initial values are y0 = α and (y1 − y0)/h = β or y1 = α + hβ.

End of examination.
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