UNIVERSITY OF BRISTOL
School of Mathematics
NUMERICAL ANALYSIS

MATH 30029W
(Paper code MATH-30029W)

December 2024 2 hour 30 minutes

Solutions

Do not turn over until instructed.
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Cont... NA-24W

All questions are new.

1. (a) (Similar to example in notes)
(i) Perform row operation Ry — Ry — 100R; gives

0.01 1.6 32.1
0 —159 —3.19 x 103

since using 3 digits, so 22—3210 = 3188 rounds to —3190. Then y = —3190/159 =
20.1 after rounding and 0.01x = 32.1 — 32.2 = —0.1 after rounding meaning that
x = —0.1/0.01 = —10. This is way out.

(ii) Partial pivoting requires us to swap rows before eliminating. So
1 06 22
0.01 1.6 32.1
and doing Ry — Ry — 0.01R; gives
1 06 22
0 1.59 31.9

after rounding. Now y = 31.9/1.59 = 20.1 after rounding and back substituting
xr =22—12.1=9.9. This is much better.

(b) (Follows standard method described in notes, in set homeworks and on past papers.)
Perform LU decomposition in steps

1 -1 0 1 000t -1 0 O
1 1 -1 0 110 0]]0 2 =1 0
0 1 -1 oo 1 0] |0 1 -1
0 0 1 1 000 10 0 1 1]
(1 0 0 0] [1 =1 0 O]
(1 00pj0 2 -1 0
0 35 1 0f [0 8 1
00010 0 1 1]
(1 0 0 O] 1 -1 0 O]
1 10 0[]0 -1 0
~lo 1 10f]o s =M
00 21]0 0 0 2]
Solve in two steps: Ly = b then Ux =y. So first
10 0 0] [ 1
110 0| |g| |1
012 10|y |1
00 2 1] |y 1
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Forward substitution easily gives y = (1,0, 1, %)T Next

1 -1 0 O 1 1
0 2 —1 0] |2 0
0 0 3 —1f|=s| |1
00 0 3] [m 3

Back substitution results in x = (£, 2,4 1)T,
(¢) (Unseen )
The trick is to see that B = PAP where

0001

0010
pP—

0100

1 00 0

is such that P~!' = P. So Bz = b is A(Pz) = Pb = b which means Pz

= x and so
z = Px. Only now do we need the calculation of x from part (b). Soz = (3,5, 2,1

Y.

Continued. ..
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2.

Cont... NA24-W

(a)

(Similar to methods used in notes and homeworks.)

Draw the two graphs, spot there is only one intersection, at x = x*, say, which is
obviously positive and less than 1. Solutions of 2® + 2 — 1 = 0 are equivalent to
solutions of # = 1/(1 + x?) (since 1 + z? is non-vanishing) and we are done.

(Similar to examples in notes and homeworks)

The map is defined by z,,1 = g(z,) where g(z) = 1/(1 + 2?).

For 0 <z <1, g(z) € [1,1] C [0,1] since it is monotonically decreasing and takes its
max/min values at z =0, x = 1. Also

—2x
/ —
which requires some work to establish. For example,
6x% — 2
" .
g (Zﬂ) - (1—|—I‘2)3

implies there is a max/min in the interval 0 < = < 1 at =z = 1/ \/3 at which
19'(1/v/3)] = 9/(8v/3) < 1. This is a maximum since ¢’(0) = 0 and ¢'(1) = 1.

Hence, by the Fixed Point Theorem, there exists a unique fixed point z* € (0, 1) s.t.
all zy € [0, 1] will converge to z*.

Finally, since ¢'(z) # 0 for x # 0 then ¢'(z*) # 0 and so the scheme has first order
convergence.

(Again, familiar type of example.)

Here we are presented with =, = g(x,) with

g(x)zl_x-

12

Assuming a fixed point z* = (1 — z*)/(x*)? rearranges to the original cubic. So same
fixed point. Now
N —24x
g (IL’) - ZL’3

whose size is greater than 1 for all 0 < # < 1. Hence |¢'(z*)| > 1 and the scheme
cannot converge to x* apart from if xo = z*.
(Again familiar type of example: it is just Newton’s method.)

Here we are presented with z,,,1 = g(x,) with

(2) 223 +1
r) = ———.
g 312 +1

Assuming a fixed point z*(3(2*)* + 1) = 2(z*)3 + 1 rearranges to the original cubic.
So same fixed point. Now

62232+ 1) —6x(22° +1)  6x(e® +x—1)

B (322 +1)2 (3224 1)2

g'(z)
and so ¢'(z*) = 0. Since g(z) is continuous, there is a non-vanishing region around

r = z* where |¢/(z)| < 1 and this means the scheme will converge for z, sufficiently
close to z*.
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(e) (Unrelated to the rest of this question, but related to Q4. Standard methods, similar
examples in notes and homeworks).

We Taylor expand approximation about zy and equate with f’(z¢) thus:
f(wo) =~ aff +2hf +20°f" + 3h% (&)

+B(f +hf + 3h2 7+ §h° (&)

+7f
for & € (xo,z0 + 2h) and & € (9,9 + h). Then we match coefficients so that

a+p+v=0, 2ha+ hfs =1, da+ B =0.
This gives
a=—1/2h, B =4/2h, v =—3/2h

so that
—f(xo+2h) +4f(xog+ h) — 3f(xg)

2h

f'(wo) =
and the error is O(h?).

Continued. ..
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Cont... NA-24W

3. (a)

(b)

()

(Simple numerical methods following definitions in notes)
Denoting f(z) = 1/(1 + 2?) as the integrand we have

T, = L(f(0) + f(1) = 5 (=0.75)
and 4
So = (f(0) +4f(1/2) + F(1)) = 4T/60 (= 0.783333).

(More simple numerical methods following definitions in notes)

T, = L(F(0) +2£(1/2) + F(1)) = 0.775

and
T, = %(f(O) +2f(1/4)+2f(1/2) +2f(3/4) + f(1)) = 0.7827941.

(Need to remember Romberg iterations, otherwise straightforward)

ATy — T
T = % = 0.7833333

(same as Sy since Romberg once on the same number of sub-intervals is the same as

Simpson). And

AT, — T
T = % = 0.7853921.

Then we have

(1) (1)
167 — T
= % = (0.7855294.

We imagine that 7, 4(2) is the most accurate since the error associated with this iterate

is O(hS) compared with T." which is O(h*). However, we see that T." is closest to
the exact value, which is surprising and unexplained.

T

(Follows methods in class, unseen example but simple.)
(i) First ¢o(x) = 1 since this is a polynomial of degree 0 satisfying ¢o(0) = 1. Next,
we let ¢1(z) = Ajx + By and By = 1 plus

1
<¢1,(Z§0> :O:Al/ rdr+ 1.
0

Then A; = —2 and ¢ (z) = -2z + 1.
Next let ¢o(z) = Asx® + Byx + 1 and require

1 1 1
<¢2,¢o>=0=A2/ xQdHBQ/ de/ Qo = Ay/3+ BoJ2+ 1
0 0 0

and

(D2, d1) :O:A2/01x2(1—2x)dx+Bg/le(1—2x)dx+/01(1—2m)dx
= Ay(—1/6) + B2(—1/6).
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So Ay = —Bs and Ay = 6, By = —6 which gives the required result.

ii) To get x; need to solve 622 — 6z + 1 = 0 and this gives
j

1 1
=+ 23
T12 5 6\/_

Then the weights are given by
1
T — X9 3 1 1 1 1
— der = — [ - -2+ 2/3) ==
o /Oxl—wg v 3(2 2+6\/_) 2

1
T — I 3 /1 1 1 1
g d = - - - — — 3 = —.
“ /o Ty — I ! \/§<2 2 6\/_) 2

Using these values we have

and

I~ (f(1/243/6) + f(1/2 —V/3/6))/2 = 0.7868852.

Continued. ..
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Cont... NA-24W

4. (a)

(b)

(Bookwork)
Euler is

Yiyr = Yi + hf(yi ti), 1=0,1,...
with yo = a.

(Bookwork/done in notes)

The local truncation error is defined as 7,11 = y(t;11) — y;+1 where y(t;41) is the exact
solution at ¢t = t;,1 and y;,1 is the numerical solution at the same time assuming the
y; = y(t;) is exact.

For Euler

Tisn = y(ti+h) —yt:) — hf(yi, ts)

! h2 ! /
= y(t;) +hy'(t:) + >Y (t:;) +... —y(t;) — hy/(t;)
h2 1!
= Y (ts) +

So local truncation error is O(h?).

(Unseen example. Similar seen on notes/homeworks)
(i) Solution is easy: y(t) = t*/2 +t.

(ii) First, y! satisfies
h h
Yir1 — Y =0
and has solution y = A for a constant A. For the particular solution use ansatz given
and substitute into Euler with f =¢; + 1

ah®(i +1)? — ai®h® + b(i + 1)h — bih = h(ih + 1)

which simplifies to
ah®(2i + 1) + bh = ih® + h

which means a = 1/2 and b=1—ah =1 — h/2. Thus
yi = A+t /2+t:(1— h/2)
is the general solution, and using y, = 0 gives A = 0 so that
yi = 13/2 4 t;(1 = h/2)
is the discrete Euler solution.

(iii) At t =ty = Nh =1

Ex = y(1) — yn = g _ G 11— h/Z)) — h/2.

The global error is one order less than the local truncation error which is what we
expect from the Euler method.
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(d) (Unseen example but nothing outrageous).

(i) Now we have

Tivr = y(ti+h) —4dy(ts) + 3y(ti1) + 2hf(yio1, tic1)

= ) )+ ) +
gt +300(8) () + 1)~ ) )
+2h(y'(t;) — hy" (t;) + h—2y’”(ti) .

2

2
= ShU(E) + .

and the local truncation error is O(h?).

(ii) For stability, we consider h — 0 and seek solutions to the resulting homogeneous
difference equation
Yirr — 4y +3yi1 =0

Using y; = Az* gives 22 — 42 4+ 3 = 0 whose roots are z = 3 and z = 1. Since one of
the roots is s.t. |z| > 1 the scheme is unstable (root condition theorem).

End of examination.

Page 9 of 9



