

UNIVERSITY OF BRISTOL

School of Mathematics

NUMERICAL ANALYSIS

MATH 30029W

(Paper code MATH-30029W)

---

December 2024 2 hour 30 minutes

---

**Solutions**

*Do not turn over until instructed.*

All questions are new.

1. (a) (Similar to example in notes)

(i) Perform row operation  $R_2 \rightarrow R_2 - 100R_1$  gives

$$\begin{bmatrix} 0.01 & 1.6 & 32.1 \\ 0 & -159 & -3.19 \times 10^3 \end{bmatrix}$$

since using 3 digits, so  $22 - 3210 = 3188$  rounds to  $-3190$ . Then  $y = -3190/159 = 20.1$  after rounding and  $0.01x = 32.1 - 32.2 = -0.1$  after rounding meaning that  $x = -0.1/0.01 = -10$ . This is way out.

(ii) Partial pivoting requires us to swap rows before eliminating. So

$$\begin{bmatrix} 1 & 0.6 & 22 \\ 0.01 & 1.6 & 32.1 \end{bmatrix}$$

and doing  $R_2 \rightarrow R_2 - 0.01R_1$  gives

$$\begin{bmatrix} 1 & 0.6 & 22 \\ 0 & 1.59 & 31.9 \end{bmatrix}$$

after rounding. Now  $y = 31.9/1.59 = 20.1$  after rounding and back substituting  $x = 22 - 12.1 = 9.9$ . This is much better.

(b) (Follows standard method described in notes, in set homeworks and on past papers.)

Perform LU decomposition in steps

$$\begin{aligned} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & \frac{3}{2} & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & \frac{5}{3} \end{bmatrix} = LU. \end{aligned}$$

Solve in two steps:  $L\mathbf{y} = \mathbf{b}$  then  $U\mathbf{x} = \mathbf{y}$ . So first

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

Forward substitution easily gives  $\mathbf{y} = (1, 0, 1, \frac{1}{3})^T$ . Next

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & \frac{5}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \frac{1}{3} \end{bmatrix}.$$

Back substitution results in  $\mathbf{x} = (\frac{7}{5}, \frac{2}{5}, \frac{4}{5}, \frac{1}{5})^T$ .

(c) (*Unseen*)

The trick is to see that  $B = PAP$  where

$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

is such that  $P^{-1} = P$ . So  $B\mathbf{z} = \mathbf{b}$  is  $A(P\mathbf{z}) = P\mathbf{b} = \mathbf{b}$  which means  $P\mathbf{z} = \mathbf{x}$  and so  $\mathbf{z} = P\mathbf{x}$ . Only now do we need the calculation of  $\mathbf{x}$  from part (b). So  $\mathbf{z} = (\frac{1}{5}, \frac{4}{5}, \frac{2}{5}, \frac{7}{5})^T$ .

*Continued...*

2. (a) (*Similar to methods used in notes and homeworks.*)

Draw the two graphs, spot there is only one intersection, at  $x = x^*$ , say, which is obviously positive and less than 1. Solutions of  $x^3 + x - 1 = 0$  are equivalent to solutions of  $x = 1/(1 + x^2)$  (since  $1 + x^2$  is non-vanishing) and we are done.

(b) (*Similar to examples in notes and homeworks*)

The map is defined by  $x_{n+1} = g(x_n)$  where  $g(x) = 1/(1 + x^2)$ .

For  $0 \leq x \leq 1$ ,  $g(x) \in [\frac{1}{2}, 1] \subset [0, 1]$  since it is monotonically decreasing and takes its max/min values at  $x = 0$ ,  $x = 1$ . Also

$$|g'(x)| = \left| \frac{-2x}{(1 + x^2)^2} \right| < 1, \quad \text{for } 0 \leq x \leq 1$$

which requires some work to establish. For example,

$$g''(x) = \frac{6x^2 - 2}{(1 + x^2)^3}$$

implies there is a max/min in the interval  $0 < x < 1$  at  $x = 1/\sqrt{3}$  at which  $|g'(1/\sqrt{3})| = 9/(8\sqrt{3}) < 1$ . This is a maximum since  $g'(0) = 0$  and  $g'(1) = \frac{1}{2}$ .

Hence, by the Fixed Point Theorem, there exists a unique fixed point  $x^* \in (0, 1)$  s.t. all  $x_0 \in [0, 1]$  will converge to  $x^*$ .

Finally, since  $g'(x) \neq 0$  for  $x \neq 0$  then  $g'(x^*) \neq 0$  and so the scheme has first order convergence.

(c) (*Again, familiar type of example.*)

Here we are presented with  $x_{n+1} = g(x_n)$  with

$$g(x) = \frac{1 - x}{x^2}.$$

Assuming a fixed point  $x^* = (1 - x^*)/(x^*)^2$  rearranges to the original cubic. So same fixed point. Now

$$g'(x) = \frac{-2 + x}{x^3}$$

whose size is greater than 1 for all  $0 < x < 1$ . Hence  $|g'(x^*)| > 1$  and the scheme cannot converge to  $x^*$  apart from if  $x_0 = x^*$ .

(d) (*Again familiar type of example: it is just Newton's method.*)

Here we are presented with  $x_{n+1} = g(x_n)$  with

$$g(x) = \frac{2x^3 + 1}{3x^2 + 1}.$$

Assuming a fixed point  $x^*(3(x^*)^2 + 1) = 2(x^*)^3 + 1$  rearranges to the original cubic. So same fixed point. Now

$$g'(x) = \frac{6x^2(3x^2 + 1) - 6x(2x^3 + 1)}{(3x^2 + 1)^2} = \frac{6x(x^3 + x - 1)}{(3x^2 + 1)^2}$$

and so  $g'(x^*) = 0$ . Since  $g(x)$  is continuous, there is a non-vanishing region around  $x = x^*$  where  $|g'(x)| < 1$  and this means the scheme will converge for  $x_0$  sufficiently close to  $x^*$ .

(e) (Unrelated to the rest of this question, but related to Q4. Standard methods, similar examples in notes and homeworks).

We Taylor expand approximation about  $x_0$  and equate with  $f'(x_0)$  thus:

$$\begin{aligned} f'(x_0) &\approx \alpha(f + 2hf' + 2h^2f'' + \frac{8}{6}h^3f'''(\xi_1)) \\ &\quad + \beta(f + hf' + \frac{1}{2}h^2f'' + \frac{1}{6}h^3f'''(\xi_2)) \\ &\quad + \gamma f \end{aligned}$$

for  $\xi_1 \in (x_0, x_0 + 2h)$  and  $\xi_2 \in (x_0, x_0 + h)$ . Then we match coefficients so that

$$\alpha + \beta + \gamma = 0, \quad 2h\alpha + h\beta = 1, \quad 4\alpha + \beta = 0.$$

This gives

$$\alpha = -1/2h, \quad \beta = 4/2h, \quad \gamma = -3/2h$$

so that

$$f'(x_0) \approx \frac{-f(x_0 + 2h) + 4f(x_0 + h) - 3f(x_0)}{2h}$$

and the error is  $O(h^2)$ .

*Continued...*

3. (a) (*Simple numerical methods following definitions in notes*)

Denoting  $f(x) = 1/(1+x^2)$  as the integrand we have

$$T_1 = \frac{1}{2}(f(0) + f(1)) = \frac{3}{4} (= 0.75)$$

and

$$S_2 = \frac{1}{6}(f(0) + 4f(1/2) + f(1)) = 47/60 (= 0.783333).$$

(b) (*More simple numerical methods following definitions in notes*)

$$T_2 = \frac{1}{4}(f(0) + 2f(1/2) + f(1)) = 0.775$$

and

$$T_4 = \frac{1}{8}(f(0) + 2f(1/4) + 2f(1/2) + 2f(3/4) + f(1)) = 0.7827941.$$

(c) (*Need to remember Romberg iterations, otherwise straightforward*)

$$T_2^{(1)} = \frac{4T_2 - T_1}{3} = 0.7833333$$

(same as  $S_2$  since Romberg once on the same number of sub-intervals is the same as Simpson). And

$$T_4^{(1)} = \frac{4T_4 - T_2}{3} = 0.7853921.$$

Then we have

$$T_4^{(2)} = \frac{16T_4^{(1)} - T_2^{(1)}}{15} = 0.7855294.$$

We imagine that  $T_4^{(2)}$  is the most accurate since the error associated with this iterate is  $O(h^6)$  compared with  $T_4^{(1)}$  which is  $O(h^4)$ . However, we see that  $T_4^{(1)}$  is closest to the exact value, which is surprising and unexplained.

(d) (*Follows methods in class, unseen example but simple.*)

(i) First  $\phi_0(x) = 1$  since this is a polynomial of degree 0 satisfying  $\phi_0(0) = 1$ . Next, we let  $\phi_1(x) = A_1x + B_1$  and  $B_1 = 1$  plus

$$\langle \phi_1, \phi_0 \rangle = 0 = A_1 \int_0^1 x \, dx + 1.$$

Then  $A_1 = -2$  and  $\phi_1(x) = -2x + 1$ .

Next let  $\phi_2(x) = A_2x^2 + B_2x + 1$  and require

$$\langle \phi_2, \phi_0 \rangle = 0 = A_2 \int_0^1 x^2 \, dx + B_2 \int_0^1 x \, dx + \int_0^1 1 \, dx = A_2/3 + B_2/2 + 1$$

and

$$\begin{aligned} \langle \phi_2, \phi_1 \rangle = 0 &= A_2 \int_0^1 x^2(1-2x) \, dx + B_2 \int_0^1 x(1-2x) \, dx + \int_0^1 (1-2x) \, dx \\ &= A_2(-1/6) + B_2(-1/6). \end{aligned}$$

So  $A_2 = -B_2$  and  $A_2 = 6$ ,  $B_2 = -6$  which gives the required result.

(ii) To get  $x_j$  need to solve  $6x^2 - 6x + 1 = 0$  and this gives

$$x_{1,2} = \frac{1}{2} \pm \frac{1}{6}\sqrt{3}.$$

Then the weights are given by

$$w_1 = \int_0^1 \frac{x - x_2}{x_1 - x_2} dx = \frac{3}{\sqrt{3}} \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{6}\sqrt{3} \right) = \frac{1}{2}$$

and

$$w_2 = \int_0^1 \frac{x - x_1}{x_2 - x_1} dx = -\frac{3}{\sqrt{3}} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{6}\sqrt{3} \right) = \frac{1}{2}.$$

Using these values we have

$$I \approx (f(1/2 + \sqrt{3}/6) + f(1/2 - \sqrt{3}/6))/2 = 0.7868852.$$

*Continued...*

## 4. (a) (Bookwork)

Euler is

$$y_{i+1} = y_i + hf(y_i, t_i), \quad i = 0, 1, \dots$$

with  $y_0 = \alpha$ .

## (b) (Bookwork/done in notes)

The local truncation error is defined as  $\tau_{i+1} = y(t_{i+1}) - y_{i+1}$  where  $y(t_{i+1})$  is the exact solution at  $t = t_{i+1}$  and  $y_{i+1}$  is the numerical solution at the same time assuming the  $y_i = y(t_i)$  is exact.

For Euler

$$\begin{aligned} \tau_{i+1} &= y(t_i + h) - y(t_i) - hf(y_i, t_i) \\ &= y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \dots - y(t_i) - hy'(t_i) \\ &= \frac{h^2}{2}y''(t_i) + \dots \end{aligned}$$

So local truncation error is  $O(h^2)$ .

## (c) (Unseen example. Similar seen on notes/homeworks)

(i) Solution is easy:  $y(t) = t^2/2 + t$ .

(ii) First,  $y_i^h$  satisfies

$$y_{i+1}^h - y_i^h = 0$$

and has solution  $y_i^h = A$  for a constant  $A$ . For the particular solution use ansatz given and substitute into Euler with  $f = t_i + 1$

$$ah^2(i+1)^2 - ai^2h^2 + b(i+1)h - bih = h(ih+1)$$

which simplifies to

$$ah^2(2i+1) + bh = ih^2 + h$$

which means  $a = 1/2$  and  $b = 1 - ah = 1 - h/2$ . Thus

$$y_i = A + t_i^2/2 + t_i(1 - h/2)$$

is the general solution, and using  $y_0 = 0$  gives  $A = 0$  so that

$$y_i = t_i^2/2 + t_i(1 - h/2)$$

is the discrete Euler solution.

(iii) At  $t = t_N = Nh = 1$

$$E_N = y(1) - y_N = \frac{3}{2} - \left( \frac{1}{2} + 1(1 - h/2) \right) = h/2.$$

The global error is one order less than the local truncation error which is what we expect from the Euler method.

(d) (*Unseen example but nothing outrageous*).

(i) Now we have

$$\begin{aligned}
 \tau_{i+1} &= y(t_i + h) - 4y(t_i) + 3y(t_{i-1}) + 2hf(y_{i-1}, t_{i-1}) \\
 &= y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \frac{h^3}{6}y'''(t_i) \dots \\
 &\quad - 4y(t_i) + 3(y(t_i) - hy'(t_i) + \frac{h^2}{2}y''(t_i) - \frac{h^3}{6}y'''(t_i) \dots) \\
 &\quad + 2h(y'(t_i) - hy''(t_i) + \frac{h^2}{2}y'''(t_i) \dots) \\
 &= \frac{2}{3}h^3y'''(t_i) + \dots
 \end{aligned}$$

and the local truncation error is  $O(h^3)$ .

(ii) For stability, we consider  $h \rightarrow 0$  and seek solutions to the resulting homogeneous difference equation

$$y_{i+1} - 4y_i + 3y_{i-1} = 0$$

Using  $y_i = Az^i$  gives  $z^2 - 4z + 3 = 0$  whose roots are  $z = 3$  and  $z = 1$ . Since one of the roots is s.t.  $|z| > 1$  the scheme is unstable (root condition theorem).

*End of examination.*