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Cont... NA-24W
All questions are new.

1. (a) (Similar to example in notes)

(i) Perform row operation R2 → R2 − 100R1 gives[
0.01 1.6 32.1

0 −159 −3.19× 103

]
since using 3 digits, so 22−3210 = 3188 rounds to −3190. Then y = −3190/159 =
20.1 after rounding and 0.01x = 32.1− 32.2 = −0.1 after rounding meaning that
x = −0.1/0.01 = −10. This is way out.

(ii) Partial pivoting requires us to swap rows before eliminating. So[
1 0.6 22

0.01 1.6 32.1

]
and doing R2 → R2 − 0.01R1 gives[

1 0.6 22

0 1.59 31.9

]
after rounding. Now y = 31.9/1.59 = 20.1 after rounding and back substituting
x = 22− 12.1 = 9.9. This is much better.

(b) (Follows standard method described in notes, in set homeworks and on past papers.)

Perform LU decomposition in steps
1 −1 0 0

1 1 −1 0

0 1 1 −1

0 0 1 1

 =


1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1




1 −1 0 0

0 2 −1 0

0 1 1 −1

0 0 1 1



=


1 0 0 0

1 1 0 0

0 1
2

1 0

0 0 0 1




1 −1 0 0

0 2 −1 0

0 0 3
2
−1

0 0 1 1



=


1 0 0 0

1 1 0 0

0 1
2

1 0

0 0 2
3

1




1 −1 0 0

0 2 −1 0

0 0 3
2
−1

0 0 0 5
3

 = LU.

Solve in two steps: Ly = b then Ux = y. So first
1 0 0 0

1 1 0 0

0 1
2

1 0

0 0 2
3

1



y1

y2

y3

y4

 =


1

1

1

1

 .
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Forward substitution easily gives y = (1, 0, 1, 1
3
)T . Next

1 −1 0 0

0 2 −1 0

0 0 3
2
−1

0 0 0 5
3



x1

x2

x3

x4

 =


1

0

1
1
3

 .
Back substitution results in x = (7

5
, 2
5
, 4
5
, 1
5
)T .

(c) (Unseen )

The trick is to see that B = PAP where

P =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


is such that P−1 = P . So Bz = b is A(Pz) = Pb = b which means Pz = x and so
z = Px. Only now do we need the calculation of x from part (b). So z = (1

5
, 4
5
, 2
5
, 7
5
)T .

Continued...
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Cont... NA24-W

2. (a) (Similar to methods used in notes and homeworks.)

Draw the two graphs, spot there is only one intersection, at x = x∗, say, which is
obviously positive and less than 1. Solutions of x3 + x − 1 = 0 are equivalent to
solutions of x = 1/(1 + x2) (since 1 + x2 is non-vanishing) and we are done.

(b) (Similar to examples in notes and homeworks)

The map is defined by xn+1 = g(xn) where g(x) = 1/(1 + x2).

For 0 ≤ x ≤ 1, g(x) ∈ [1
2
, 1] ⊂ [0, 1] since it is monotonically decreasing and takes its

max/min values at x = 0, x = 1. Also

|g′(x)| =
∣∣∣∣ −2x

(1 + x2)2

∣∣∣∣ < 1, for 0 ≤ x ≤ 1

which requires some work to establish. For example,

g′′(x) =
6x2 − 2

(1 + x2)3

implies there is a max/min in the interval 0 < x < 1 at x = 1/
√

3 at which
|g′(1/

√
3)| = 9/(8

√
3) < 1. This is a maximum since g′(0) = 0 and g′(1) = 1

2
.

Hence, by the Fixed Point Theorem, there exists a unique fixed point x∗ ∈ (0, 1) s.t.
all x0 ∈ [0, 1] will converge to x∗.

Finally, since g′(x) 6= 0 for x 6= 0 then g′(x∗) 6= 0 and so the scheme has first order
convergence.

(c) (Again, familiar type of example.)

Here we are presented with xn+1 = g(xn) with

g(x) =
1− x
x2

.

Assuming a fixed point x∗ = (1− x∗)/(x∗)2 rearranges to the original cubic. So same
fixed point. Now

g′(x) =
−2 + x

x3

whose size is greater than 1 for all 0 < x < 1. Hence |g′(x∗)| > 1 and the scheme
cannot converge to x∗ apart from if x0 = x∗.

(d) (Again familiar type of example: it is just Newton’s method.)

Here we are presented with xn+1 = g(xn) with

g(x) =
2x3 + 1

3x2 + 1
.

Assuming a fixed point x∗(3(x∗)2 + 1) = 2(x∗)3 + 1 rearranges to the original cubic.
So same fixed point. Now

g′(x) =
6x2(3x2 + 1)− 6x(2x3 + 1)

(3x2 + 1)2
=

6x(x3 + x− 1)

(3x2 + 1)2

and so g′(x∗) = 0. Since g(x) is continuous, there is a non-vanishing region around
x = x∗ where |g′(x)| < 1 and this means the scheme will converge for x0 sufficiently
close to x∗.
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(e) (Unrelated to the rest of this question, but related to Q4. Standard methods, similar
examples in notes and homeworks).

We Taylor expand approximation about x0 and equate with f ′(x0) thus:

f ′(x0) ≈ α(f + 2hf ′ + 2h2f ′′ + 8
6
h3f ′′′(ξ1))

+β(f + hf ′ + 1
2
h2f ′′ + 1

6
h3f ′′′(ξ2))

+γf

for ξ1 ∈ (x0, x0 + 2h) and ξ2 ∈ (x0, x0 + h). Then we match coefficients so that

α + β + γ = 0, 2hα + hβ = 1, 4α + β = 0.

This gives
α = −1/2h, β = 4/2h, γ = −3/2h

so that

f ′(x0) ≈
−f(x0 + 2h) + 4f(x0 + h)− 3f(x0)

2h

and the error is O(h2).

Continued...
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Cont... NA-24W

3. (a) (Simple numerical methods following definitions in notes)

Denoting f(x) = 1/(1 + x2) as the integrand we have

T1 =
1

2
(f(0) + f(1)) =

3

4
(= 0.75)

and

S2 =
1

6
(f(0) + 4f(1/2) + f(1)) = 47/60 (= 0.783333).

(b) (More simple numerical methods following definitions in notes)

T2 =
1

4
(f(0) + 2f(1/2) + f(1)) = 0.775

and

T4 =
1

8
(f(0) + 2f(1/4) + 2f(1/2) + 2f(3/4) + f(1)) = 0.7827941.

(c) (Need to remember Romberg iterations, otherwise straightforward)

T
(1)
2 =

4T2 − T1
3

= 0.7833333

(same as S2 since Romberg once on the same number of sub-intervals is the same as
Simpson). And

T
(1)
4 =

4T4 − T2
3

= 0.7853921.

Then we have

T
(2)
4 =

16T
(1)
4 − T

(1)
2

15
= 0.7855294.

We imagine that T
(2)
4 is the most accurate since the error associated with this iterate

is O(h6) compared with T
(1)
4 which is O(h4). However, we see that T

(1)
4 is closest to

the exact value, which is surprising and unexplained.

(d) (Follows methods in class, unseen example but simple.)

(i) First φ0(x) = 1 since this is a polynomial of degree 0 satisfying φ0(0) = 1. Next,
we let φ1(x) = A1x+B1 and B1 = 1 plus

〈φ1, φ0〉 = 0 = A1

∫ 1

0

x dx+ 1.

Then A1 = −2 and φ1(x) = −2x+ 1.

Next let φ2(x) = A2x
2 +B2x+ 1 and require

〈φ2, φ0〉 = 0 = A2

∫ 1

0

x2 dx+B2

∫ 1

0

x dx+

∫ 1

0

dx = A2/3 +B2/2 + 1

and

〈φ2, φ1〉 = 0 = A2

∫ 1

0

x2(1− 2x) dx+B2

∫ 1

0

x(1− 2x) dx+

∫ 1

0

(1− 2x) dx

= A2(−1/6) +B2(−1/6).

Page 6 of 9



So A2 = −B2 and A2 = 6, B2 = −6 which gives the required result.

(ii) To get xj need to solve 6x2 − 6x+ 1 = 0 and this gives

x1,2 =
1

2
± 1

6

√
3.

Then the weights are given by

w1 =

∫ 1

0

x− x2
x1 − x2

dx =
3√
3

(
1

2
− 1

2
+

1

6

√
3

)
=

1

2

and

w2 =

∫ 1

0

x− x1
x2 − x1

dx = − 3√
3

(
1

2
− 1

2
− 1

6

√
3

)
=

1

2
.

Using these values we have

I ≈ (f(1/2 +
√

3/6) + f(1/2−
√

3/6))/2 = 0.7868852.

Continued...
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Cont... NA-24W

4. (a) (Bookwork)

Euler is
yi+1 = yi + hf(yi, ti), i = 0, 1, . . .

with y0 = α.

(b) (Bookwork/done in notes)

The local truncation error is defined as τi+1 = y(ti+1)− yi+1 where y(ti+1) is the exact
solution at t = ti+1 and yi+1 is the numerical solution at the same time assuming the
yi = y(ti) is exact.

For Euler

τi+1 = y(ti + h)− y(ti)− hf(yi, ti)

= y(ti) + hy′(ti) +
h2

2
y′′(ti) + . . .− y(ti)− hy′(ti)

=
h2

2
y′′(ti) + . . .

So local truncation error is O(h2).

(c) (Unseen example. Similar seen on notes/homeworks)

(i) Solution is easy: y(t) = t2/2 + t.

(ii) First, yhi satisfies
yhi+1 − yhi = 0

and has solution yhi = A for a constant A. For the particular solution use ansatz given
and substitute into Euler with f = ti + 1

ah2(i+ 1)2 − ai2h2 + b(i+ 1)h− bih = h(ih+ 1)

which simplifies to
ah2(2i+ 1) + bh = ih2 + h

which means a = 1/2 and b = 1− ah = 1− h/2. Thus

yi = A+ t2i /2 + ti(1− h/2)

is the general solution, and using y0 = 0 gives A = 0 so that

yi = t2i /2 + ti(1− h/2)

is the discrete Euler solution.

(iii) At t = tN = Nh = 1

EN = y(1)− yN =
3

2
−
(

1

2
+ 1(1− h/2)

)
= h/2.

The global error is one order less than the local truncation error which is what we
expect from the Euler method.

Page 8 of 9



(d) (Unseen example but nothing outrageous).

(i) Now we have

τi+1 = y(ti + h)− 4y(ti) + 3y(ti−1) + 2hf(yi−1, ti−1)

= y(ti) + hy′(ti) +
h2

2
y′′(ti) +

h3

6
y′′′(ti) . . .

−4y(ti) + 3(y(ti)− hy′(ti) +
h2

2
y′′(ti)−

h3

6
y′′′(ti) . . .)

+2h(y′(ti)− hy′′(ti) +
h2

2
y′′′(ti) . . .)

=
2

3
h3y′′′(ti) + . . .

and the local truncation error is O(h3).

(ii) For stability, we consider h→ 0 and seek solutions to the resulting homogeneous
difference equation

yi+1 − 4yi + 3yi−1 = 0

Using yi = Azi gives z2 − 4z + 3 = 0 whose roots are z = 3 and z = 1. Since one of
the roots is s.t. |z| > 1 the scheme is unstable (root condition theorem).

End of examination.
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