
Numerical Analysis Sheet 10

Boundary-value problems

There is no set homework from this sheet.

1. (a) Determine the values of α, β and γ which minimise the error in the following central

difference approximation to the second derivative of a function y(x) at x0

y′′(x0) ≈ αy(x0 − h) + βy(x0) + γy(x0 + h), (1)

assuming small h.

(b) If y(x) were a polynomial, up to what degree of polynomial is the approximation (1)

exact for any x0, h ?

(c) Consider the boundary-value problem for y(x) defined by y′′(x) = 1 for 0 < x < 5

with y(0) = y(5) = 0.

(i) Solve for y(x).

(ii) Apply the approximation proposed in (1) to the boundary-value problem to

construct a system of equations for unknowns yi ≡ y(i), i = 1, 2, 3, 4.

(iii) Do you expect the values of y(i) in (ii) to coincide with the exact values. Explain

your answer.

2. We want to find an approximate solution of the boundary-value problem (BVP)

y′′(x) = 1, y(0) = 0, y(1) = 1.

(a) Calculate the exact solution to the BVP above.

(b) Show how by using the finite difference method this leads to system of equations for

yi ≈ y(ih) expressed as

−2y1 + y2 = h2,

yi−1 − 2yi + yi+1 = h2, 1 < i < n− 1,

yn−2 − 2yn−1 = h2 − 1,

where h = 1/n.

(c) If n = 4 find the resulting solution (y1, y2, y3) of part (a). Calculate the exact solution

y(x) and show that yi = y(ih).

(d) Prove that values of yi exactly match the exact solution y(ih) for any integer value of

n. Explain why.

(e) Now consider the related problem

y′′(x) = 1, y(0) = 0, y′(1) = 0. (∗∗)



By introducing what is called a shadow point yn+1 which is immediately set equal

to yn−1 (because of the boundary condition at x = 1), show that a possible finite

difference approximation is

−2y1 + y2 = h2,

yi−1 − 2yi + yi+1 = h2, 1 < i < n,

yn−1 − yn =
1

2
h2.

Prove that the exact solution of (∗∗) also satisfies yi = y(ih).
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