
Numerical Analysis Sheet 2

LU Decomposition, bisection method

Please submit your answers to questions 2, 6 and 7(a) by 12 noon on Monday 13th October to

the blackboard submission point

1. Consider the system of equations Ax = b with

A =

 1 −4 1

−3 2 3

4 −1 6

 , b = (0, 0, 1)T .

(a) Deduce the three augmented matrices that result from Gaussian elimination when we

implement: (i) no pivoting; (ii) partial pivoting; (iii) scaled partial pivoting.

(b) Determine numerical solutions using methods (i), (ii) and (iii) and 2-digit precision.

[Calculators out ! This is time-consuming.]

2. Find an LU decomposition for the matrix

A =

 −1 1 1

2 −1 1

1 1 2

 .

Use your LU decomposition find the inverse of the matrix A.

3. Find a decomposition of the form

PA = LU

for the matrix

A =

 0 1 2

4 2 3

2 −1 4

 .

Here P is a permutation matrix, L is lower triangular and U is upper triangular.

4. If P1 and P2 are orthogonal matrices satisfying P−1
i = P T

i show that P = P1P2 is also an

orthogonal matrix.

5. Prove that the LU -decomposition of a matrix A, being such that diag{L} = (1, 1, . . . , 1)T ,

is unique.

[Hint: you may find the results of Sheet1 Q5 useful.]

6. (a) If A is a non-singular symmetric matrix, show that it is possible to express it in

the form A = LDLT where L is a lower triangular matrix such that diag{L} =

(1, 1, . . . , 1)T and D is a diagonal matrix.



(b) A real matrix, A, is said to be positive definite if xTAx > 0 for all real x ∈ Rn not

identically zero. What conditions on D are needed to ensure the symmetric matrix in

part (a) is positive definite ?

(c) Hence show that a symmetric positive definite matrix A can be written in the form

A = QQT for a Q you should define.

7. (a) Show that the function f(x) = x3 − x− 1/4 has 3 roots, exactly one of which lies in

the interval [1, 2].

[Hints: you will find that sketching the curve of x3 − x is a useful starting point as

well as searching for maxima and minima of the function.]

(b) Determine the number of interations of the Bisection method which would assure of

finding this root to an accuracy of 10−4.

(c) Give 2 intervals [a, b] which contain exactly one of the other 2 roots.

8. Consider f(x) = x2 − 2 and perform five iterations of the Bisection method in the starting

interval [1, 2] to find an approximation for
√
2. How many digits of your final approximation

are guaranteed to be correct?

9. By plotting the two curves y = tanhx and y = µ/x, where µ > 0 show that there is one

positive root x∗ to the equation

x tanhx = µ.

In order to use the Bisection method, one ideally wants tight estimates for upper and lower

bounds a, b (respectively) on the value of x∗. For this example I’ve been able to determine

a = µ if µ ≥ 1 and a =
√
µ if µ < 1 and b = µ+ 1. Can you reproduce these values or do

better ?

10. An n× n matrix A with elements (A)ij = aij is said to be (row) diagonally dominant if

|aii| ≥
n∑

j=1

̸=i

|aij|

(a) [HARD] Consider that A is diagonally dominant and use this to show that the reduced

(n − 1) × (n − 1) matrix A(1) with elements a
(1)
ij that results from the first step of

Gaussian elimination is also diagonally dominant.

(b) Deduce that the upper triangular matrix U in the LU decomposition of A is diagonally

dominant.
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