

Fixed-Point Iteration, Newton-Raphson Method

Please hand in your answer to question 1 by 12 noon Monday 20th October to the Blackboard Assessed Homework 1 submission point.

1. ASSESSED HW PROBLEM

(a) Consider the simultaneous linear equations

$$\begin{aligned} 0.01x + 1.6y &= 32.1, \\ x + 0.6y &= 22. \end{aligned}$$

You are given that these equations are satisfied by $x = 10, y = 20$.

(i) (5 marks)

Using 3 digit precision (calculators will be useful), perform Gaussian elimination on the augmented matrix

$$\tilde{A} = \begin{bmatrix} 0.01 & 1.6 & 32.1 \\ 1 & 0.6 & 22 \end{bmatrix}$$

and thus evaluate numerical approximations to x, y .

(ii) (6 marks)

Show that the use of partial pivoting improves the accuracy of approximations to the exact solution obtained by Gaussian elimination using 3 digit precision.

(b) (8 marks)

Perform an LU -decomposition of the 4×4 banded matrix

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

and use your answer to solve $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (1, 1, 1, 1)^T$.

(c) (6 marks)

Using permutation matrices only (i.e. without performing a new LU -decomposition), determine the solution, \mathbf{z} , of $B\mathbf{z} = \mathbf{b}$ where $B = A^T$.

2. (a) Show that the function $g(x) = 2^{-x}$ has a unique fixed point x^* in the interval $[1/3, 1]$, and that the fixed point iteration $x_{n+1} = g(x_n)$ with initial point $x_0 \in [1/3, 1]$ converges to this fixed point x^* .

(b) By using the mean value theorem find an upper bound for the number of iterations of the fixed point method with initial point $x_0 \in [1/3, 1]$ which would be required to find the fixed point x^* to an accuracy of 10^{-4} .

3. In this question we consider solutions to the equation

$$x \tanh x = 1.$$

(a) By plotting curves of $y = x$ and $y = \coth x$, illustrate that there is just one positive root, x^* , lying in $x^* > 1$.

(b) Consider the fixed point iteration $x_{n+1} = \coth x_n$ and prove that this converges to the root $x^* \in (1, 2)$ for an initial point $x_0 \in (1, 2)$.

(c) Determine the order of convergence and find upper and lower bounds on the asymptotic error constant given $x^* \in (1, 2)$.

(d) Start with $x_0 = 1.5$, tabulate the first 5 iterates (use 5 sig. figs.) and values of $|x_n - x_{n-1}|/|x_{n-1} - x_{n-2}|$ for $n \geq 2$. What do these latter values represent ?

(e) Devise an iterative scheme which converges to the root more rapidly than the scheme in part (b).

4. Consider the following iterating schemes for calculating $21^{1/3}$. Show that each of the iteration schemes has a fixed point which is a solution of the equation $x^3 = 21$. Rank the methods in order based upon the speed of convergence assuming that $x_0 = 1$ in each case. (You may assume that all four iteration schemes converge to one of their fixed points if $x_0 = 1$.)

(a) $x_{n+1} = 20x_n/21 + 1/x_n^2$

(b) $x_{n+1} = x_n - (x_n^3 - 21)/(3x_n^2)$

(c) $x_{n+1} = (21/x_n)^{1/2}$

(d) $x_{n+1} = x_n - (x_n^4 - 21x_n)/(x_n^2 - 21)$

5. Using a graphical method investigate the behaviour of the Newton Raphson iteration for calculating the unique root of $f(x) = (4x - 7)/(x - 2)$ given the following starting points i) 1.625 ii) 1.875 iii) 1.5 iv) 1.95 and v) 3.

6. The function $f(x) = \tanh(x)$ has a single zero at $x^* = 0$.

(a) Write down the Newton iteration for this function and tabulate the iterates x_n , $n = 1, 2, 3$ for $x_0 = 0.5$ and the quotient $|x_n|/|x_{n-1}|^3$.

(b) Determine the order of convergence, α , for this scheme and the asymptotic error constant, λ . Comment on your result in relation to the tabulated results part (a).

(c) Using Taylor's theorem show that values of x_0 satisfying

$$|x_0| < \sqrt{3/2 \cosh 2x_0}$$

will ensure convergence of the scheme.

(d) Show by a direct approach that the scheme will converge provided the initial guess satisfies $|x_0| > \frac{1}{4}|\sinh 2x_0|$. You are given that the value $x_0 = 1.5$ falls outside this range of values. Calculate iterates x_n for $n = 1, 2$ for $x_0 = 1.5$ to confirm this result.

7. Consider the following algorithm

$$x_{n+1} = x_n - f(x_n)/f'(x_n) - \frac{1}{2}f''(x_n)(f(x_n))^2/(f'(x_n))^3$$

for finding a root of the function $f(x)$. Show that in general this scheme will have at least cubic convergence.

8. Derive the useful estimate

$$\frac{1}{2} \left(x + \frac{a}{x} \right)$$

for approximating \sqrt{a} with an initial guess x by applying Newton Raphson to $f(x) = x^2 - a$. Generalise this to an equivalent formula for $\sqrt[n]{a}$ and use it to estimate $\sqrt[3]{9}$ using an initial guess of $x = 2$.

9. Consider the iterative scheme

$$x_{n+1} = \sqrt{2 - \sqrt{4 - x_n^2}}, \quad n = 0, 1, 2, \dots$$

with $x_0 = \sqrt{2} \approx 1.414$ to 4 significant figures.

(a) Show that a fixed point is $x^* = 0$ and that the order of convergence is linear.
 (b) Show, by hand, that the scheme is mathematically equivalent to

$$x_{n+1} = \frac{x_n}{\sqrt{2 + \sqrt{4 - x_n^2}}}, \quad n = 0, 1, 2, \dots$$

(c) Iterate both schemes up to x_4 retaining only 4 significant figures at each step of your calculation. Tabulate x_n and $2^{n+1}x_n$ for $n = 1, 2, 3, 4$ for each scheme (i.e. 4 columns and 4 rows).
 (d) In both schemes $2^{n+1}x_n$ should tend to π . Provide a plausible explanation as to why the first one does not, but the second one does.