
Numerical Analysis Sheet 4

Aitken’s ∆2-method, Newton-Raphson in higher dimensions, Lagrange interpolating

polynomials

Please hand in your answers to questions 4 and 7 by 12 noon on Monday 27th October to the

blackboard submission point.

1. (a) Rewriting the cubic equation x3 + 4x2 − 10 = 0 as x = 1
2

√
10− x3 and using an

initial guess x0 = 1.5, use fixed point iteration 6 times to estimate a root of the cubic

equation.

(b) By using Aitken’s method, generate 5 better estimates and thereby find the root to 4

decimal places.

2. Suppose that A is any non-singular matrix. Show that one iteration of the Newton method

will give the correct solution to the problem Ax = b for any initial guess.

3. If

f(x, y) = ax2 + by + c, g(x, y) = dx+ e,

where a, b, c, d and e are constants, show that the Newton method will find a solution

(b, d ̸= 0) to f = g = 0 in two iterations for any initial guess.

4. Suppose that

f(x, y) = x2 − y2, g(x, y) = 1 + xy.

Find two real roots of the system. Show that if the initial guess is (x0, y0) = (α, α) then

the Newton method can never converge to a root.

5. Consider using the multidimensional Newton’s method to find the roots of f(x, y) =

g(x, y) = 0 where f(x, y) = ex + y and g(x, y) = ey − x.

(a) Using graphical means, deduce there is only one root (x∗, y∗) satisfying 0 < x∗ < 1,

−e < y∗ < −1.

(b) Set up the Newton iterative step.

(c) Using (x0, y0) = (1,−1), find (x1, y1) explicitly and (x2, y2) numerically to 5 digit

precision.

6. Determine the Lagrange interpolating polynomial, P2(x) of degree 2, which coincides with

the curve f(x) = ex at x = 0, 1, 2. Then show that the maximum bound Emax, say, on the

error E = |P2(x)− f(x)| in the interval 0 ≤ x ≤ 2 is given by

Emax =
e2
√
3
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.



Find the actual maximum error (you are given that solutions of ex−x(1−e)2+ 1
2
(e−3)(e−

1) = 0 are x = 0.448307 . . . and 1.60644 . . .) in the interval 0 ≤ x ≤ 2.

7. Let f(x) = 2x.

(a) Use Lagrange interpolation to find a polynomial P2(x) of degree at most two that

agrees with f(x) at the points x0 = 0, x1 = 1, and x2 = 2. Simplify your result.

(b) Without using the result of part (a), show that the modulus of the error in the

interpolation, |f(x)− P2(x)|, is bounded by
4(ln(2))3

9
√
3

≈ 0.085 for all x ∈ [0, 2].

8. The Gauss-Seidel method is used for approximating solutions to the n×n linear system of

equations Ax = b under the iterative scheme

Lx(k+1) = b− Ux(k)

where A = L + U and (L)ij = aij if i ≥ j, zero otherwise and (U)ij = aij if i < j, zero

otherwise (that is U is the upper triangular part of A with zeros on and below the leading

diagonal, L is the lower triangular part of A with zeros above the leading diagonal.)

(a) If x∗ is the exact solution of Ax = b show that the error e(k) = x(k) − x∗ at the kth

step satisfies

Le(k+1) = −Ue(k).

(b) If aij is diagonally dominant (meaning |aii| >
n∑

j=1

̸=i

|aij|) show that

∥e(k+1)∥∞ < ∥e(k)∥∞

where ∥e(k)∥∞ = max
1≤i≤n

|e(k)i |.
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