Numerical Analysis Sheet 4

Aitken’s A’-method, Newton-Raphson in higher dimensions, Lagrange interpolating

polynomials

Please hand in your answers to questions 4 and 7 by 12 noon on Monday 27th October to the

blackboard submission point.

1. (a) Rewriting the cubic equation z® + 42% — 10 = 0 as ¢ = 3v/10 — 2% and using an
initial guess ¢y = 1.5, use fixed point iteration 6 times to estimate a root of the cubic

equation.

(b) By using Aitken’s method, generate 5 better estimates and thereby find the root to 4

decimal places.

2. Suppose that A is any non-singular matrix. Show that one iteration of the Newton method

will give the correct solution to the problem Ax = b for any initial guess.

3. If
fla,y) = az® + by + ¢, g(z,y) = dz + e,
where a,b,c,d and e are constants, show that the Newton method will find a solution

(b,d #0) to f = g =0 in two iterations for any initial guess.

4. Suppose that
flz,y) = a® — o2, g(z,y) =1+ ay.

Find two real roots of the system. Show that if the initial guess is (z¢,yo) = (o, ) then

the Newton method can never converge to a root.

5. Consider using the multidimensional Newton’s method to find the roots of f(z,y) =

g(z,y) = 0 where f(z,y) =" +y and g(z,y) = e’ — z.

(a) Using graphical means, deduce there is only one root (z*,y*) satisfying 0 < z* < 1,
—e <y < -1

(b) Set up the Newton iterative step.

(¢) Using (x0,40) = (1,—1), find (z1,y1) explicitly and (z2,y) numerically to 5 digit

precision.

6. Determine the Lagrange interpolating polynomial, Ps(x) of degree 2, which coincides with
the curve f(x) =e® at x =0, 1,2. Then show that the maximum bound E,,.,, say, on the
error £ = |Py(z) — f(x)] in the interval 0 < z < 2 is given by

e2/3

Emax = .
27




Find the actual maximum error (you are given that solutions of e” —z(1—¢)*+3(e—3)(e—
1) =0 are x = 0.448307... and 1.60644...) in the interval 0 < z < 2.

7. Let f(z) = 2°.
(a) Use Lagrange interpolation to find a polynomial Py(x) of degree at most two that
agrees with f(x) at the points g = 0, z; = 1, and x9 = 2. Simplify your result.
(b) Without using the result of part (a), show that the modulus of the error in the
4(In(2))3
4(In(2))° ~ 0.085 for all z € [0, 2].

9v3

8. The Gauss-Seidel method is used for approximating solutions to the n x n linear system of

interpolation, |f(z) — Py(x)|, is bounded by

equations Ax = b under the iterative scheme
LxFD) = p — Uyx®

where A = L+ U and (L);; = a;; if ¢ > j, zero otherwise and (U);; = a;; if i < j, zero
otherwise (that is U is the upper triangular part of A with zeros on and below the leading

diagonal, L is the lower triangular part of A with zeros above the leading diagonal.)

(a) If x* is the exact solution of Ax = b show that the error e®) = x(*) — x* at the kth
step satisfies
Le™ ) = —e®,

(b) If a;; is diagonally dominant (meaning |a;| > Z la;;|) show that

j=1

le®Vle < fle® s

where [[e® . = max [e’)|.
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