
Numerical Analysis Sheet 7

Orthogonal polynomials and Gaussian quadrature

Please hand in your answer to question 1 by 12 noon on Monday 17th November to the Blackboard

Assessed HW2 submission point.

1. ASSESSED HW PROBLEM

(a) (4 marks)

By sketching curves y = x and y = 1/(1+x2) on the same graph, show that the cubic

equation x3 + x− 1 = 0 has just one root, x∗, say, lying in the interval (0, 1).

(b) (6 marks)

Prove that the iteration

xn+1 =
1

1 + x2
n

, n ≥ 0

converges to a unique fixed point x∗ ∈ (0, 1) for any initial guess x0 ∈ (0, 1), stating

any theorems you rely upon. What is the order of convergence of the scheme ?

(c) (5 marks)

Show that the iteration

xn+1 =
1− xn

x2
n

, n ≥ 0

has the same fixed point, x∗, as in part (b) but that, for x0 ̸= x∗, xn will not converge

to x∗ as n → ∞.

(d) (5 marks)

Show that the iteration

xn+1 =
2x3

n + 1

3x2
n + 1

, n ≥ 0

also has the same fixed point, x∗, as in part (b). Argue why it must converge for x0

sufficiently close to x∗ and demonstrate that convergence is faster than linear.

(e) (5 marks)

Use the approximation

f(x∗) ≈ f(xn) + (x∗ − xn)f
′(xn) +

1

2
(x∗ − xn)

2f ′′(xn),

which ignores terms of O(|x∗−xn|3), as the basis of an iterative scheme for determining

the roots, x∗, of the function f(x). Specifically, derive the following iterative scheme

xn+1 = xn −
f ′(xn)

f ′′(xn)

(
1−

√
1− 2f(xn)f ′′(xn)

[f ′(xn)]2

)
.

You should give clear reasons for any choices you make in the derivation of this

expression.



2. The Legendre polynomials Pn(x) are orthogonal polynomials on the interval [−1, 1] with

weight function w(x) = 1 and standardisation condition Pn(1) = 1.

The first three Legendre polynomials are given as P0(x) = 1, P1(x) = x, P2(x) =
3
2
x2 − 1

2
.

(a) Use the Gram-Schmidt process to derive

(i) P3(x) =
5

2
x3 − 3

2
x, and (ii) P4(x) =

35

8
x4 − 30

8
x2 +

3

8
.

(b) Find the zeros, x1 and x2, of P2(x) and their corresponding Gauss weights, w1 and

w2, and use them to approximate the value of the integral

I =

∫ 1

0

1

1 + x2
dx.

Compare your answer to the exact value.

(c) Why does approximating
1

2

∫ 1

−1

1

1 + x2
dx

using a two-point Gauss-Legendre quadrature lead to a worse approximation to I ?

3. Let ϕn(x), n = 0, 1, . . ., be a sequence of polynomials of degree n that are orthogonal on

the interval [0, 1] with respect to the weight function w(x) = x. Hence they satisfy∫ 1

0

ϕn(x)ϕm(x)x dx = 0 if n ̸= m.

In addition they satisfy the standardisation condition ϕn(1) = 1 for all n.

(a) Determine the first two polynomials ϕ0(x) and ϕ1(x) and show that

ϕ2(x) = 10x2 − 12x+ 3.

(b) Determine the coefficient a0 in the expansion

x2 =
2∑

n=0

anϕn(x).

(c) Specify the points xi and weights wi in the 2-point Gaussian quadrature formula∫ 1

0

f(x)x dx ≈
2∑

j=1

wj f(xj).

(d) Using your results, or otherwise, specify points ti and weights vi in terms of xi and wi

such that the approximation∫ ∞

1

(
b0/t

3 + b1/t
4 + b2/t

5 + b3/t
6
)
dt ≈

2∑
j=1

vj
(
b0/t

3
j + b1/t

4
j + b2/t

5
j + b3/t

6
j

)
is exact when b0, b1, b2, b3 are arbitrary constants.



4. The Chebyshev polynomials of the second kind Un, n = 0, 1, 2, . . ., are a sequence of

polynomials of degree n that are orthogonal on the interval [−1, 1] with respect to the

weight function w(x) =
√
1− x2. Hence, they satisfy∫ 1

−1

Un(x)Um(x)
√
1− x2 dx = 0 if n ̸= m. (1)

In addition they satisfy the standardisation condition Un(1) = n+ 1 for all n.

(a) (i) Explain why ∫ 1

−1

x
√
1− x2 dx and

∫ 1

−1

x3
√
1− x2 dx

are both zero and calculate the values of∫ 1

−1

√
1− x2 dx and

∫ 1

−1

x2
√
1− x2 dx.

[HINT: use the substitution x = cos θ.]

(ii) Using the properties of the Chebyshev polynomials of the second kind and (i),

determine the first three polynomials U0(x), U1(x) and U2(x).

(iii) Specify the sampling points xj and weights wj in the 2-point Gaussian quadrature

formula which makes the approximation∫ 1

−1

f(x)
√
1− x2 dx ≈

2∑
j=1

wj f(xj)

exact for polynomials f(x) of degree 3 or less.

(iv) Use the results of part (iii) to find an approximation for the integral∫ 1

−1

cos
(π x

2

)
dx

and compare it to the exact value of this integral.

(b) The Chebyshev polynomials of the second kind have the explicit form

Un(x) =
sin[(n+ 1) cos−1(x)]

sin[cos−1(x)]
. (2)

(i) Deduce an explicit formula for the position, xj, of the sampling points for any n.

(ii) Show that the functions in equation (2) satisfy the recursion relation

Un+1(x) + Un−1(x) = f(x)Un(x)

where f(x) is a function that you are to determine. Use your result to argue that

the functions in (2) are indeed polynomials of degree n.

Show also that the functions in (2) satisfy the standardisation condition for the

Chebyshev polynomials of the second kind.



(iii) Using the formula (2) show that (1) is satisfied.

5. The Chebyshev polynomials of the first kind, Tn(x), are orthogonal on [−1, 1] with respect

to the weight function w(x) = 1/
√
1− x2 and satisfy the standardisation condition

Tn(1) = 1 for all n.

(a) Determine T0(x), T1(x) and show that

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.

[Hint: The substitution x = cos θ should prove useful when performing certain

integrals.]

Show that these results agree with the general formula Tn(x) = cos(n cos−1 x).

(b) Calculate the sampling points, xj, and weights, wj, j = 1, . . . , n, for the Gauss-

Chebyshev quadrature formula∫ 1

−1

f(x)√
1− x2

dx ≈
n∑

j=1

wj f(xj)

for n = 1, 2, 3. Hence show wj agree with the general formula π/n for j = 1, . . . , n.

(c) It is a remarkable result that∫ 1

−1

ln |x− t|√
1− x2

dx = −π ln(2),

a constant, for all t ∈ [1, 1]. How would you go about using Gaussian quadrature to

accurately compute this integral ?

6. (a) Explain why

In =

∫ ∞

−∞
xne−x2

dx

is zero when n is odd. You are given I0 =
√
π. Determine that

I2n =
(2n− 1)

2
I2n−2

for n ≥ 1 and hence show that

I2n =
(2n)!

22nn!

√
π.

(b) The Hermite polynomials Hn(x) are orthogonal on the infinite interval (−∞,∞) with

respect to the weighting function w(x) = e−x2
. They satisfy the standardisation

condition1 that the coefficient in front of the leading power of xn in Hn(x) should be

set to one.

Calculate H0(x), H1(x) and H2(x).

1this is the probabilist’s defnition; physicists use a different definition.



(c) Hence determine the sampling points x1, x2 and weights w1, w2 for a Gaussian quadra-

ture formula which will evaluate ∫ ∞

−∞
e−x2

f(x) dx

exactly if f(x) is a polynomial of degree 3 or less.

(d) Use the results of part (c) to find an approximation for the integral∫ ∞

−∞

1

1 + x2
dx .

What is the exact value of this integral?

(e) The Hermite polynomials Hn(x) may be defined by the relation

f(x, t) ≡ e2xt−t2 =
∞∑
n=0

tn

n!
Hn(x) . (3)

In this way they are obtained by expanding f(x, t) in powers of t.

Calculate the function g(s, t) =
∫∞
−∞ e−x2

f(x, s) f(x, t) dx and expand the result in

powers of s and t. Express g(s, t) alternatively in terms of Hermite polynomials, and

by comparing terms of the form sntm show that

∫ ∞

−∞
e−x2

Hn(x)Hm(x) dx =

0 if n ̸= m

2nn!
√
π if n = m

[You may use the following identity

∫ ∞

−∞
e−x2+2ax dx =

√
π ea

2

for all a ∈ R.]

©University of Bristol 2025

This material is copyright of the University of Bristol unless explicitly stated. It is provided exclusively for educational purposes at the

University of Bristol and is to be downloaded or copied for your private study only.


